ACDC电源模块和DCDC电源模块有什么区别呢

发布时间:2023-04-17 10:22
作者:AMEYA360
来源:网络
阅读量:2348

  根据市场调研在线网发布的2023-2029年中国模块电源行业市场深度评估及投资盈利预测报告分析,国内模块电源行业实际产值在2019年就已经突破千亿,同比增长11.4%。

  新能源技术的不断发展和更新迭代,对于电源模块的持续发展也起到了很大的促进作用。目前,国内的电源模块在小型化、可靠性以及节能环保等方面都取得了一定的成绩,推动行业快速发展。电源模块的发展步伐越来越稳健,规模也越来越大。但是有些用户可能会问道,究竟什么是电源模块?电源模块中ACDC和DCDC又有什么区别呢?今天AMEYA360电子元器件采购网将给大家进行进行报道!

ACDC电源模块和DCDC电源模块有什么区别呢

  关于电源模块

  随着科技的发展,电源体积趋向模块化和小型化,于是出现了电源模块。电源模块集成度更高,效率更好,属于电子元器件的一种,电源模块是一种可以直接焊接直插在电路板上的电源转换器,按变换方式一般分为AC转DC或DC转DC,本质上就是一个集成电路板单元。将开关电源的主要电路集成在芯片电路中,可以实现宽频调制、隔离及多种保护等功能。

  ACDC和DCDC的区别

  交流电(AC)是指电流方向随时间作周期性变化的电流,在一个周期内的平均电流为0。不同于直流电(DC),它的方向是会随着时间发生改变的,而直流电没有周期性变化。

  DC-直流电

  DC是指直流电,电流的大小和方向不变。通常有3V、6V、9V、12V、24V等常用电压。

  典型的移动网站开发我们在生活中常见的电池和充电器。通常,充电器的输出约为4.5V。直流电源包括化学电池、燃料电池、温差电池、太阳能电池、直流发电机等,主要用于电子仪器、电解、电镀、直流电阻拖动等。

  AC-交流电

  AC是英文AlternatingCurent的简写,中文是交流电。交流电是随时间定期转换的电流方向,基本的情况是正弦电流。

  AC电源是指为负载提供交流电的能源设备,通常是指220~250V之间的电源输入电压,用作家用电器的进入线,以及工业生产中常用的380V。我国对电源有相关规定,电源为三相380V,交流电频率为50Hz。民用电源为单相220V,交流电频率为50Hz。

  ACDC和DCDC的区别

  DCDC电源模块和ACDC的区别在于输入不同。虽然输出为DC,但输入电压分别为DC和AC。通常DCDC电源模块通常指12V、24V、36V、48V等低压范围,交流直流输入通用,但ACDC模块电源的输入范围为AC85-265V和DC100-370V。

  海凌科的电源模块有什么不一样?

  全系列电源模块

  海凌科现有多款电源模块,其中包括ACDC系列电源模块,DCDC系列电源以及开关电源模块,模块具备高效率、高可靠性、使用寿命长、符合UL/CE/EMC 及安规测试要求等特点,可应用于医疗、工控、电力、仪器仪表、通信、铁路等领域。

ACDC电源模块和DCDC电源模块有什么区别呢


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
电源模块的概述及结构特点分析
  在现代电子设备和电气系统中,电源模块扮演着至关重要的角色。它不仅为各种电路提供稳定、可靠的电能,还能实现多种功能,比如电压转换、滤波、保护等。  电源模块的概述  电源模块,简称为“电源”或“电源单元”,主要任务是将输入的电能(交流或直流)转换为设备所需的直流电压形式,供应给各种电子电路。根据应用场景的不同,电源模块的设计也存在多样性,包括线性电源、开关电源、适配器和高压电源等。  主要功能  电压转换:将输入电压转换为所需的输出电压(如5V、12V、±15V等)。  稳压:保持输出电压的稳定性,避免因负载变化而引起的波动。  滤波:降低噪声和干扰,确保输出信号干净、稳定。  保护功能:过载保护、短路保护、过压保护和过温保护,保障设备安全。  隔离:实现输入和输出的电气隔离,增强安全性和稳定性。  分类  线性电源:结构简单,噪声低,响应快,但效率较低,体积较大。  开关电源:效率高、体积小、能量转换效率高,但设计复杂,可能引入电磁干扰(EMI)。  模块化电源:即插即用,易于维护和扩展。  电源模块的结构特点分析  电源模块的结构设计是保证其性能的关键,合理的结构布局能有效提升效率和可靠性。一般来说,电源模块由输入端、变换部分、滤波部分、控制部分以及输出端等几大部分组成,下面详述其结构特点。  1. 变换部分  核心变换部分主要是电感、电容、晶体管(包括MOSFET、晶闸管等)等元件组成的开关电路。它实现直流到直流(DC-DC)或交流到直流(AC-DC)的转换。开关电源中的开关元件通过高速开关控制实现能量的高效转换,具有高效率的特点。  2. 控制电路  控制电路负责调节开关元件的导通时间,以实现稳定的输出电压。这部分通常包括PWM控制器、反馈电路和比较器等。通过反馈系统,电源能实时监测输出电压变化,并调整开关频率和占空比,确保输出电压的稳定。  3. 滤波和保护电路  滤波电路包含各种电感和电容,用于降低输出电压中的纹波和噪声,提高信号质量。同时,保护电路如过载保护、短路保护、过压保护和热保护,保证电源在异常工作环境下安全稳定运行。这些保护措施既能延长电源的使用寿命,又能保障设备安全。  4. 隔离设计  在许多电源模块中,输入和输出采用电气隔离设计,如变压器隔离或光隔离。隔离结构不仅能有效保护用户安全,还能减少电磁干扰,提高电源的抗干扰能力。  5. 散热设计  电源模块在工作过程中会产生大量热量,为保证其稳定性和延长使用寿命,散热结构设计尤为重要。常见的措施包括散热片、风扇、散热孔等,确保芯片和关键元件温度控制在合理范围内。  6. 结构布局与体积  电源模块的结构布局应合理紧凑,减少信号路径长度,降低干扰和损耗。同时,现代电源追求微型化趋势,采用表面贴装技术(SMT)和多层PCB设计,有效实现体积缩小和性能优化。  电源模块作为电子设备的“动力系统”,其设计的优劣直接影响设备的性能和稳定性。理解其结构特点,有助于工程师进行合理选型和设计优化。
2025-06-04 13:39 阅读量:194
一文了解模拟、开关、数字电源的区别
  在电源设计中我们如何选择电源模块,那么选择的前提是,我们得了解各种电源,了解各种电源的区别,那样我们才可以正确的选择电源模块。  模拟电源介绍  模拟电源:即变压器电源,通过铁芯、线圈来实现,线圈的匝数决定了两端的电压比,铁芯的作用是传递变化磁场,主线圈在50HZ频率下产生了变化的磁场,这个变化的磁场通过铁芯传递到副线圈,在副线圈里就产生了感应电压,于是变压器就实现了电压的转变。  模拟电源的缺点:线圈、铁芯本身是导体,那么它们在转化电压的过程中会由于自感电流而发热(损耗),所以变压器的效率很低,一般不会超过35%。  音响器材功放中变压器的应用:大功率功放需要变压器提供更多的功率输出,那么,只有通过线圈匝数的增加、铁芯体积的增大来实现,匝数和铁芯体积的增加就会加重其损耗。所以,大功率功放的变压器必须做的非常大,这样就会导致:笨重,发热量大。  开关电源介绍  开关电源:在电流进入变压器之前,通过晶体管的开关功能,将我们通常50HZ的电流频率提升到数万HZ,在这么高的频率下,磁场变化频率也达到几万HZ,那么,就可以减少线圈匝数、铁芯体积获得同样的电压转化比,由于线圈匝数、铁芯体积的减少,损耗大大降低,一般开关电源效率达到90%,而体积可以做的非常小,并且输出稳定,所以开关电源具有模拟电源难以达到的优点。  (开关电源也有自己的不足,如输出电压有纹波及开关噪声,线性电源是没有的)  音响器材-功放中开关电源的应用:开关电源的描述过程中已经表明开关电源的优势,所以即使是大功率功放,开关电源一样可以做的很精细、小巧。  数字电源介绍  在简单易用、参数变更要求不多的应用场合,模拟电源产品更具优势,因为其应用的针对性可以通过硬件固化来实现,而在可控因素较多、实时反应速度更快、需要多个模拟系统电源管理的、复杂的高性能系统应用中,数字电源则更有优势。此外,在复杂的多系统业务中,相对模拟电源,数字电源是通过软件编程来实现多方面的应用,其具备的可扩展性与重复使用性使用户可以方便更改工作参数,优化电源系统。通过实时过电流保护与管理,它还可以减少外围器件的数量。  在复杂的多系统业务中,相对模拟电源,数字电源是通过软件编程来实现多方面的应用,其具备的可扩展性与重复使用性使用户可以方便更改工作参数,优化电源系统。通过实时过电流保护与管理,它还可以减少外围器件的数量。  数字电源有用DSP控制的,还有用MCU控制的。相对来讲,DSP控制的电源采用数字滤波方式,较MCU控制的电源更能满足复杂的电源需求、实时反应速度更快、电源稳压性能更好。  数字电源有什么好处  首先它是可编程的,比如通讯、检测、遥测等所有功能都可用软件编程实现。另外,数字电源具有高性能和高可靠性,非常灵活。  干扰:单片机中数字和模拟之间,因为数字信号是频谱很宽的脉冲信号,因此主要是数字部分对模拟部分的干扰很强;不仅一般都采用数字电源和模拟电源分开、二者之间用滤波器连接,在一些要求较高的场合,例如某些单片机内部的 AD 转换器进行 AD 转换时,常常要让数字部分进入休眠状态,绝大部分数字逻辑停止工作,以防止它们对模拟部分形成干扰。如果干扰严重,甚至可以分别用两个电源,一般用电感和电容隔离就行了。也可以将整个板子上数字和模拟部分的电源分别联在一起,用分别的通路直接接到电源滤波电容的焊点上。如果对抗干扰要求不高,也可以随便接在一起。  温馨提示  (1)如果不使用芯片的 A/D 或者 D/A 功能,可以不区分数字电源和模拟电源。(2)如果使用了 A/D 或者 D/A,还需考虑参考电源设计。
2025-04-29 09:47 阅读量:316
一文了解电源管理集成电路损坏的原因
  电源管理集成电路(简称PMIC)是现代电子设备中不可或缺的组件,负责有效地管理电源分配、调节和监测。尽管PMIC设计得越来越先进,但在实际使用中,仍然可能因各种原因导致其损坏。以下是一些容易造成电源管理IC损坏的因素,希望对你有所帮助。  1.电源过压  定义  电源过压是指输入电压超出PMIC的额定范围。这种情况通常发生在电源故障、瞬态浪涌或不当使用电源适配器时。影响  绝缘击穿:过高的电压可能导致PMIC内部绝缘材料击穿,导致电路短路或永久性损坏。  热损坏:过压条件下,PMIC内部会产生更多热量,可能导致过热并损坏组件。  2.过载和短路  定义  过载指的是PMIC输出端口连接到超出其额定电流的负载,而短路则是电源输出端直接连接到接地,形成极低的电阻路径。  影响  高电流损伤:持续的过载会导致PMIC超出其设计能力,导致内部元器件发热及损坏。  瞬间短路损坏:短路会瞬间产生大量电流,可能导致PMIC内部的融化和烧坏。  3.温度过高  定义  PMIC在工作时产生热量,若环境温度过高或散热不良,会导致其温度超出设计极限。  影响  热失效:高温会使得PMIC的材料和连接结构发生变化,短时间内可能导致工作失效。  加速老化:持续高温会加速半导体材料的老化,导致性能下降或完全失效。  4.静电放电(ESD)  定义  静电放电是由于静电积聚并突然释放所致,PMIC在没有有效防护的情况下容易受到损坏。  影响  瞬时击穿:静电放电会在非常短的时间内施加高电压,可能导致PMIC中的绝缘层击穿或相邻电路损坏。  性能劣化:即使没有立即致命的损坏,静电也可能导致PMIC工作性能的长期下降。  5.反向电压  定义  反向电压是指电流按相反方向流动,这通常发生在电源接反或电池安装错误时。  影响  损坏内部电路:反向电压可能导致PMIC内部电路的失效,进而导致整体电源管理功能失常。  长期效果:即使短时间的反向电压也可能导致潜在的长期损伤,从而降低PMIC的可靠性。  6.设计错误与不当使用  定义  设计错误包括布线不当、缺乏必要的保护电路,以及忽视PMIC的电气特性。人为错误也可能导致不当连接或操作。  影响  识别失误:设计中如果忽略了输入和输出阻抗匹配,可能导致信号反射和过载。  不稳定性:缺乏适当保护电路(如过压、过流和过温传感器)可能导致设备在异常条件下运行,影响功率管理的安全性。  总结来说,电源管理IC在电子系统中发挥着关键作用,但其损坏可能会导致整个系统的故障。了解并预防潜在的损坏原因,包括电源过压、过载、温度过高、静电放电、反向电压及设计错误,将有助于提高PMIC的可靠性和耐用性。在设计和测试阶段考虑这些因素,对于确保电源管理IC的稳定性和性能至关重要。
2025-04-27 11:14 阅读量:388
14个经验技巧,教你学会电源设计!
  在电源设计领域中,经验的积累往往决定了产品的稳定性和可靠性。若是电子新人了解到一些实用的设计技巧,电源设计将事半功倍。下面将总结大佬的14条电源设计经验,以此提供参考和指导。  1电路设计经验  肖特基散热片连接:肖特基的散热片可以直接接到输出正极线路,从而省去绝缘垫和绝缘粒的使用。  RCD吸收元件选择:对于15W以上功率的电路,避免使用XX4007作为RCD吸收元件,因其速度慢、压降大,易导致高温失效。  输出滤波电容耐压:输出滤波电容的耐压值应至少符合1.2倍余量,以避免量产中的损坏现象。  卧式电容跳线布置:大电容或其他电容做成卧式时,底部如有跳线应放在负极电位,以节省成本并避免使用套管。  元件承认书描述:整流桥堆、二极管或肖特基等晶元大小元件,在承认书或BOM表中需明确描述,以管控供应商送货一致性。  Snubber电容选择:为处理异音问题,Snubber电容优先使用Mylar电容。  启动电阻保护:启动电阻如使用在整流前,需串联一颗几百K的电阻,以防电阻短路时损坏IC和MOSFET。  高压大电容并联:高压大电容并联一颗103P瓷片电容,对辐射30-60MHz有抑制作用,有助于EMI整改。  Y电容容量限制:使用的Y电容总容量不能超过222P,以避免漏电流影响,设计时需特别留意安规要求。  2电路调试经验  冷机启动电流:冷机时,PSR需1.15倍电流能开机,SSR需1.3倍电流能开机,以确保老化后启动良好。  异常测试:短路或开路某个元件后,如仍有输出电压,则需进行LPS测试,过流点不能超过8A。  3安规与测试经验  安规开壳样机准备:安规开壳样机所有可选插件元件需装上供拍照用,L、N线和DC线与PCB需点白胶固定。  EMS项目测试:进行EMS项目测试时,需测试至产品损坏为止,如ESD雷击等,并记录产品余量。  4变压器设计注意事项  变压器B值控制:反激拓扑结构中,变压器B值需小于3500高斯,以避免磁饱和导致的动作失控。需确认过流点、开机瞬间、输出短路、高温、高低压等状态下的磁饱和情况。
2025-04-21 16:20 阅读量:377
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码