ROHM确立栅极耐压高达8V的150V GaN HEMT的量产体制GNE10xxTB系列

发布时间:2022-09-14 09:43
作者:Ameya360
来源:网络
阅读量:2944

    全球知名半导体制造商ROHM(总部位于日本京都市)已确立150V耐压GaN HEMT*1“GNE10xxTB系列 (GNE1040TB)”的量产体制,该系列产品的栅极耐压(栅极-源极间额定电压)*2高达8V,非常适用于基站、数据中心等工业设备和各种物联网通信设备的电源电路。

ROHM确立栅极耐压高达8V的150V GaN HEMT的量产体制GNE10xxTB系列

    一般而言,GaN器件具有优异的低导通电阻和高速开关性能,因而作为有助于降低各种电源的功耗和实现外围元器件小型化的器件被寄予厚望。但其栅极耐压很低,在开关工作时的器件可靠性方面存在问题。针对这一课题,ROHM的新产品通过采用自有的结构,成功地将栅极-源极间额定电压从常规的6V提高到了8V。这样,在开关工作过程中即使产生了超过6V的过冲电压*3,器件也不会劣化,从而有助于提高电源电路的设计裕度和可靠性。此外,该系列产品采用支持大电流且具有出色散热性的通用型封装,这使得安装工序的操作更容易。

    新产品于2022年3月起开始量产,前期工序的生产基地为ROHM Hamamatsu Co., Ltd.(日本滨松市),后期工序的生产基地为ROHM Co., Ltd.(日本京都市)。

    ROHM将有助于节能和小型化的GaN器件产品阵容命名为“EcoGaN™”*4”,并一直致力于进一步提高器件的性能。今后,ROHM将继续开发融入了“Nano Pulse Control™”*4”*4等模拟电源技术的控制IC及其模块,通过提供能够更大程度地发挥GaN器件性能的电源解决方案,为实现可持续发展社会贡献力量。

    名古屋大学研究生院工学研究科 山本真义教授表示:“今年,日本经济产业省制定了到2030年新建数据中心节能30%的目标,目前距实现该目标只有不到10年的时间。然而,这些产品的性能不仅涉及到节能,还关系到作为社会基础设施的坚固性和稳定性。针对未来的这种社会需求,ROHM开发了新的GaN器件,不仅更加节能,而且栅极耐压还高达8V,可以确保坚固型和稳定性。以该系列产品为开端,ROHM通过融合其引以为豪的模拟电源技术‘Nano Pulse Control™”*4’,不断提高各种电源的效率,在不久的将来,应该会掀起一场巨大技术浪潮,推进实现‘2040年在半导体和信息通信行业实现碳中和’的目标。”

ROHM确立栅极耐压高达8V的150V GaN HEMT的量产体制GNE10xxTB系列

    <新产品特点>

    1.采用ROHM自有结构,将栅极-源极间额定电压提高至8V

    普通的耐压200V以下的GaN器件在结构上栅极驱动电压为5V,而其栅极-源极间额定电压为6V,其电压裕度非常小,只有1V。一旦超过器件的额定电压,就可能会发生劣化和损坏等可靠性方面的问题,这就需要对栅极驱动电压进行高精度的控制,因此,这已成为阻碍GaN器件普及的重大瓶颈问题。

    针对这一课题,新产品通过采用ROHM自有的结构,成功地将栅极-源极间的额定电压从常规的6V提高到了业内超高的8V。这使器件工作时的电压裕度得到进一步扩大,在开关工作过程中即使产生了超过6V的过冲电压,器件也不会劣化,从而有助于提高电源电路的可靠性。

ROHM确立栅极耐压高达8V的150V GaN HEMT的量产体制GNE10xxTB系列

    2.采用支持大电流且具有出色散热性的封装

    新产品所采用的封装形式,支持大电流且具有出色的散热性能,在可靠性和可安装性方面已拥有出色的实际应用记录,而且通用性强,这使得安装工序的操作更加容易。此外,通过采用铜片键合封装技术,使寄生电感值相比以往封装降低了55%,从而在设计可能会高频工作的电路时,可以更大程度地发挥出器件的性能。

    3.在高频段的电源效率高达96.5%以上

    新产品通过扩大栅极-源极间额定电压和采用低电感封装,更大程度地提升了器件的性能,即使在1MHz的高频段也能实现96.5%以上的高效率,有助于提高电源设备的效率和进一步实现小型化。

ROHM确立栅极耐压高达8V的150V GaN HEMT的量产体制GNE10xxTB系列

    <应用示例>

  • 数据中心和基站等的48V输入降压转换器电路

  • 基站功率放大器单元的升压转换器电路

  • LiDAR驱动电路、便携式设备的无线充电电路

  • D类音频放大器

    ROHM确立栅极耐压高达8V的150V GaN HEMT的量产体制GNE10xxTB系列

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
ROHM课堂 | 什么是网孔分析法
  网孔分析法(网孔电流法、回路电流法)是一种电路分析的基本方法,该方法将导线互不交叉的平面电路中的每个网孔电流设为未知量,并根据基尔霍夫电压定律(KVL)建立联立方程组,从而求解电压和电流。它是与节点分析法并列的代表性电路分析方法,尤其能够高效地求解具有多个电压源的电路。若能灵活运用这两种方法,就可以应对更广泛的电气网络。接下来我们将详细介绍网孔分析法的原理、基本步骤以及如何将其拓展应用于包含多个电源和受控源的复杂电路。  网孔分析法概述  网孔分析法的前提是目标电路为平面电路。该方法为每个闭合回路(即网孔)分配一个网孔电流作为未知量,并根据电路元件、电源和KVL建立联立方程组。由于大多数示例电路都是平面电路,因此该方法具有适用性强的特点。  与基尔霍夫定律的关系  基本步骤和示例  在网孔分析法中,需要定义围绕闭合回路流动的网孔电流,并对每个回路应用KVL。以下Step将采用仅包含电阻和电压源的简单案例来说明标准分析步骤。  Step 1:分配网孔电流  首先确认电路是平面电路,然后为每个基本网孔(不包含其他回路的最小闭合路径)设置任意方向的网孔电流。按照惯例,若将所有网孔均设为顺时针方向,会更易于进行符号管理。  Step 2:对每个网孔应用KVL  对每个网孔应用KVL,并用网孔电流表示每个元件的电压降或电压升。当网孔间共有元件时,该元件的电压用网孔电流的差值来表示。  针对每个网孔,沿着回路应用KVL。需注意电流是如何流过每个电路元件的,回路内有电压源时需注意其极性。当两个网孔共有一个电路元件时,需要用两个网孔电流在该元件内流动方向相反时的差值来表示该元件的电压降。  基于矩阵形式的网孔分析法  当含有多个电压源或三个以上的回路时,手动求解所有的联立方程组将变得十分困难。在这种情况下,将方程组转换为矩阵形式,并应用标准的线性代数步骤(或电路仿真和软件),能够使分析更加系统化。下面将介绍网孔分析法中矩阵表达式的建立方法和求解步骤。
2026-01-16 10:36 阅读量:307
ROHM课堂 | 什么是叠加定理
  叠加定理(又称“叠加原理”)是一种用于分析包含多个独立电源的线性电路的电路解析方法。运用这一定理,可以分别分析每个电源(无论是DC电源还是AC电源),然后通过代数和将各结果(电压或电流)进行叠加,从而掌握整个电路的工作状态。这种方法的优点是在分析含多个电源的复杂电路时,可以让电路分析更加清晰易懂。例如,在试制阶段的电路板上增加额外电压源,或者遇到多个独立电源并存而需要排查原因的异常工作时,理解叠加定理的使用方法,将会非常方便。本文将由ROHM从叠加定理的基础知识开始,详细介绍如何分别计算每个电源并最终进行叠加求解的方法及其应用实例。若您希望拓宽电路分析的思路,敬请继续阅读下去。  点击查看全文:  https://app.jingsocial.com/api/h5/componentAuthV2?redirectUri=https%3A%2F%2Ftechclass.rohm.com.cn%2Fknowledge%2Fcircuit-design%2Fcircuit-design-basic%2F26425%3Futm_medium%3Dsocial%26utm_source%3Dwechat%26utm_campaign%3DWeChat%25EF%25BC%2588infor%25EF%25BC%2589%26utm_content%3D260107&appid=wx84ec67e412c5fc14&component_appid=wx4872c0fc3e02785c&scope=base&noscope=1&code=061v9o2w3FaJg63arT2w38RwZT3v9o20&state=jingsocial  叠加定理概述  本节将介绍叠加定理所依据的背景和理论基础。在处理包含多个独立电源的电路时,电路是否为线性是一个重要的考量因素。如果具有线性特性,就可以单独考虑每个电源产生的电压和电流响应,然后进行叠加获得最终结果。虽然严格的证明需要从数学角度论证欧姆定律和基尔霍夫定律等线性方程组的叠加特性,但本文将以便于在工程实践中应用的形式进行讲解。  线性电路和叠加定理  线性电路是指输入与输出呈比例关系(线性量),遵循欧姆定律、基尔霍夫电压定律和基尔霍夫电流定律,且不包含非线性元件的电路。典型的线性元件包括电阻器、电容器和电感器等。在仅由这些元件组成的电路中,即使存在多个电压源或电流源,也可以先独立计算每个电源的响应,再进行叠加。  应用叠加定理时,需将多个独立电源逐一“开启”,而将其他电源视为零(电压源短路,电流源开路),并计算在此状态下得到的电压和电流,最后将它们进行代数相加,即可确定整个电路的工作状态。  叠加定理的适用条件  本节将介绍叠加定理的适用条件及应用限制,并结合电路分析中的常见场景,整理线性电路范围内的处理方法。同时,也会探讨与功率计算等相关的注意事项。  适用条件及其理由  只要电路是线性的,就可以应用叠加定理。具体来说,适用条件为输入变为2倍时输出也变为2倍,并且同时施加两个输入时的输出等于分别施加各个输入时的输出之和。这里,我们将尽量避免使用略显抽象的“齐次性”和“可加性”等术语,而是尽可能用通俗易懂的方式进行说明。  1. 输入增加,输出也会同比例增加  例如,在遵循欧姆定律的电阻电路中,如果将电源电压设为2倍,则由此产生的电流和电阻器上的电压降也会变为2倍。但是,当存在二极管和晶体管等非线性特性时,这种简单的比例关系可能会被破坏。  2. 即使同时施加多个输入,其结果也应等于“单独施加每个输入时的结果之和”  例如,当5V电压源和10V电压源接入同一电路时,通过将各自单独施加时的结果相加,是否等于同时施加两个电源时的结果。对于不含二极管等的简单电阻电路,可以认为电阻器的电压降和流过的电流等于每个电源响应的总和。
2026-01-07 15:48 阅读量:288
ROHM车载40V/60V MOSFET产品阵容中新增高可靠性小型新封装产品
  2025年12月18日,全球知名半导体制造商ROHM(总部位于日本京都市)宣布,适用于主驱逆变器控制电路、电动泵、LED前照灯等应用的车载低耐压(40V/60V)MOSFET产品阵容中,又新增HPLF5060(4.9mm×6.0mm)封装产品。  新封装产品与车载低耐压MOSFET中常见的TO-252(6.6mm×10.0mm)等封装产品相比,体积可以更小,通过采用鸥翼型引脚*1,还提高了其在电路板上安装时的可靠性。另外,通过采用铜夹片键合*2技术,还能支持大电流。  采用本封装的产品已于2025年11月起陆续投入量产(样品单价500日元/个,不含税)。新产品已经开始通过电商进行销售。  未来,ROHM将不断扩展该封装产品的机型,并计划于2026年2月左右将采用可润湿侧翼成型技术*3的更小型DFN3333(3.3mm×3.3mm)封装产品投入量产。  另外,ROHM已着手开发TOLG(TO-Leaded with Gullwing)封装产品(9.9mm×11.7mm),致力于进一步扩充大功率、高可靠性封装的产品阵容。  <开发背景>  近年来,车载低耐压MOSFET正在加速向可实现小型化的5050级以及更小尺寸的封装形式转变。然而,这些小型封装因引脚间距狭窄和无引脚结构,使确保其安装可靠性成为一大难题。ROHM针对这类课题, 通过在产品阵容中新增同时满足安装可靠性和小型化两方面需求的新封装产品,来满足车载市场多样化的 需求。  <应用示例>  主驱逆变器控制电路、电动泵、LED前照灯等  <关于EcoMOS™品牌>  EcoMOS™是ROHM开发的Si功率MOSFET品牌,非常适用于功率元器件领域对节能要求高的应用。 EcoMOS™产品阵容丰富,已被广泛用于家用电器、工业设备和车载等领域。客户可根据应用需求,通过噪声性能和开关性能等各种参数从产品阵容中选择产品。  “EcoMOS™”是ROHM Co.,Ltd.的商标或注册商标。  <术语解说>  *1) 鸥翼型引脚  引脚从封装两侧向外伸出的封装形状。散热性优异,可提高安装可靠性。  *2)铜夹片键合  替代传统上连接芯片和引线框架的引线键合方式,而采用铜制夹片(扁平金属桥)直接连接的一种技术。  *3)可润湿侧翼成型技术  一种在底部电极封装的引线框架侧面进行电镀加工的技术。利用该技术可提高安装可靠性。
2025-12-18 16:55 阅读量:431
ROHM推出广泛适用于直流有刷电机的通用电机驱动器IC!
  2025年11月13日,全球知名半导体制造商ROHM(总部位于日本京都市)今日宣布,推出可广泛适用于直流有刷电机的通用电机驱动器 IC“BD60210FV” ( 20V 耐压,2 通道) 和 “BD64950EFJ”(40V耐压,1通道),新产品适用于包括冰箱、空调等白色家电在内的消费电子以及工业设备领域。  近年来,从白色家电等消费电子到工业设备领域,控制机构的电动化进程加速,对更加节能的直流有刷电机的需求日益增长。另一方面,要求电机驱动器实现设计标准化、减少外置元器件数量、可靠性高、体积小巧。如何兼顾成本和设计效率已成为重要市场需求。ROHM针对这些需求,推出兼顾通用性、空间节省程度及设计便捷性的两款产品“BD60210FV”和“BD64950EFJ”,助力提升应用产品的设计效率与性能。  两款产品均采用通用性好的封装形式,不仅易于引入新设计中,还可显著提升电路变更、衍生型号开发以及设计标准化的效率。另外,新产品还实现低待机电流(Typ:0.0μA,Max:1.0μA),可大幅提升应用产品待机时的节能性能。  “BD60210FV”是一款可驱动2个直流有刷电机或1个步进电机的双路(2ch)H桥*1直接PWM控制*2型电机驱动器。通过采用无需升压的H桥电路结构,更大程度地减少了外置元器件数量,从而有助于进一步节省空间和简化设计。  而“BD64950EFJ”则采用单路(1ch)H桥电路,同时支持直接PWM控制和恒流PWM控制*3两种控制方式。另外,采用低导通电阻设计,可有效抑制发热,实现高效率电机驱动。该产品耐压40V,适用于需要高电压(24V)驱动的有刷直流电机。  新产品已经开始量产(样品价格300日元/个,不含税),并已开始通过电商进行销售,均可购买( BD60210FV 、 BD64950EFJ )。另外, ROHM 还提供可助力应用产品开发和设计的评估板(BD60210FV-EVK-001、BD64950EFJ-EVK-001)。  未来,ROHM将继续扩充消费电子和工业设备领域的电机驱动解决方案,为社会舒适性的提升和节能贡献力量。  <应用示例>  ・消费电子设备  冰箱(制冰机旋转和风门控制)、空调(百叶窗控制)、打印机(导轨移动)  扫地机器人(刷头旋转)、热水器和电饭煲(阀门控制)、加湿器(驱动风扇控制)  ・工业设备  自动门和卷帘门(动作控制)、小型传送带(传送控制)、电动工具(旋转控制)其他各种小型电机控制  <术语解说>  *1) H桥  一种用来控制电机旋转方向的电子电路。在绘制电路图时,因4个开关(晶体管或MOSFET)呈H形排列而被称为“H桥”。  *2) 直接PWM控制  直接将PWM(脉宽调制)信号传输至H桥等电路,以此直接控制电机转速的方式。通过PWM占空比调节供给电机的电压。电路结构相对简单,响应速度较快。  *3) 恒流PWM控制  为保持电机电流恒定而采用PWM控制方式。这种控制方式能使电机在低速时仍能保持转矩,适用于需要精密控制的设备等应用。
2025-11-13 16:10 阅读量:542
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码