东芝半导体"肥皂剧"剧终 闪存价格存下滑压力

Release time:2018-05-22
author:
source:21世纪经济报道
reading:2019

历时近8个月的东芝半导体出售终于有望迎来终结。

5月17日,东芝公司发布声明表示,其出售旗下东芝半导体公司(TMC)的交易已经获得了全部所需的反垄断审查批准。作为收购财团牵头者的贝恩资本也于同日宣布,已经收到中国反垄断监管机构对此次收购的书面批准。东芝方面预计,该交易有望于6月1日前正式完成。

东芝半导体"肥皂剧"剧终 闪存价格存下滑压力

韩国芯片巨头SK海力士在TMC出售的交易中所扮演的角色一直是该交易的争议焦点之一。考虑到东芝与SK海力士在NAND市场均拥有较高的占有率,两大厂商的此种联系具体会造成何种影响值得关注。

此外,该次收购的完成又恰逢业界对NAND价格下滑存在担忧之时,闪存市场是否会迎来一场“价格崩盘”甚至是“价格战”的大戏同样值得关注。

NAND市场是否会呈集中趋势?

2017年9月28日,东芝发布公告宣布与K.K.Pangea(贝恩领衔的收购财团为此次收购成立的专项收购公司)达成协议,将以2万亿日元(约合180亿美元)的价格将旗下半导体业务部门出售给后者。除苹果、戴尔、希捷、金士顿等公司,韩国芯片厂商SK海力士也在该财团成员之中。

Coughlin Associates主席、数字存储行业分析师Tom Coughlin通过福布斯发文指出,由于西部数据与东芝的分歧已在早前得到解决,TMC出售的完成将能够使得两家公司联合拥有的世界第二大闪存生产厂进入稳定状态:西部数据很大可能将拥有稳定的晶圆厂合作关系, 苹果、戴尔、金士顿、希捷等系统与设备厂商也将一定程度直接接入闪存芯片供应渠道,而SK海力士则将能够获得部分东芝闪存技术。

行业分析师指出,由于东芝半导体的收购方财团中有存储业内的领先者SK海力士,该次收购或会造成存储器市场的进一步集中,从而在该层面对市场造成较大的影响。

此前媒体也曾报道称,作为贝恩财团参与者之一的SK海力士在这笔交易中所扮演的角色曾是中国商务部反垄断官员对该交易存在疑虑的主要原因。集邦旗下DRAMeXchange数据显示,2017年第四季度NAND闪存市场上,三星以38%的占有率稳居第一,东芝以17.1%的占有率紧随其后,SK海力士则以11.1%的占有率位居第五。

由于看好SK海力士在此次收购中投资的长远成果,三星证券在5月21日的更新中对SK海力士维持了“买入”评级建议,并将目标价格设置在了10万韩元(约合92.32美元)。当日,SK海力士股价上涨1.37%,收于89100韩元(约合82.25美元)。

三星证券分析师Hwang Min-seong表示,东芝是三星电子目前在相关科技方面唯一的竞争对手,随着东芝半导体在出售后的调整重组,该产业将面临诸多策略性的调整。Hwang进一步解释称,在TMC进行IPO之后,SK海力士将所持的可转换债券进行转换之后可持有TMC 15%的股份。

不过Coughlin认为,TMC出售交易的完成并不意味着闪存芯片市场的集中,相反,该市场将会拥有更多玩家。“随着像闪存等商品的成熟,和通常的产业整合相比,这是一个有趣的逆转。”他写道,“此种玩家数量的扩张是受多家中国闪存制造商的崛起的推动。明显,闪存行业还未完成整合。”

短期来看,TMC出售完成对其自身业务不会造成明显的冲击。在中国半导体投资联盟秘书长王艳辉看来,由于目前存储芯片厂商多处于扩厂增产的步伐之中,出售一事终于结束悬而未决的状态对其来说是一项利好。

集邦咨询DRAMeXchange方面也认为,交易完成之后,东芝后续Fab 6和Fab 7的投资规划将能按预期顺利进行,足够的资金投入也使得东芝闪存部门能够更加专注于新技术的研发,从而在与西部数据维持良好合作关系的情况下持续在NAND闪存市场同三星抗衡。

闪存价格存下滑压力

2017年半导体产业的一项纪录即是三星完成了对英特尔的超越,后者连续25年的全球第一大半导体厂商的名头就此让位。数据显示,三星以598.75亿美元的营收和14.2%的市场占有率位列第一,其营收增长率达到了49.3%,而对手英特尔仅为8.6%。

不过,三星的强势主要源自存储芯片价格在过去两年的飙升。其他以存储业务为主的半导体厂商也在这波涨价潮中受益明显。SK海力士、美光、东芝、西部数据在2017年营收分别取得了79.6%、71.1%、25.1%和119.6%的增幅,均远高于半导体市场整体21.6%的增幅。

顾文军指出,过去两年存储器短缺造成的价格上涨已导致不少厂家积极扩产以增加供应,而从需求的角度来看,目前存储芯片行业又缺乏“杀手级”的新应用,存储器尤其是NAND闪存价格下滑已是一个趋势。

Coughlin也认为,随着3D闪存将逐步成为市场的主流,包括中国在内的位于亚洲的新生产线将投入运营,闪存芯片价格预计会结束2016、2017年的涨势,在今年迎来下滑。三星电子亦在4月发布的二季度业绩展望中指出,NAND闪存报价在二季度或将呈现疲软态势。

("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
东芝研发出可降低沟槽型SiC MOSFET和半超结肖特基势垒二极管损耗的新技术
  日本川崎——东芝电子元件及存储装置株式会社(简称“东芝”)研发了一项创新技术,该技术可在增强沟槽型碳化硅(SiC)MOSFET[2]的UIS耐用性[3]的同时,显著降低其因导通电阻[1]而产生的损耗。同时,东芝还研发了半超结[4]肖特基势垒二极管(SJ-SBD),有效解决了高温下导通电阻增大的问题。这两项技术突破有望显著提升功率转换器件的可靠性与效率,尤其在电动汽车和可再生能源系统等领域。  功率半导体为所有电气设备供电并控制电力,对于节能和碳中和的实现至关重要。随着汽车的电气化和工业设备的微型化,预计对功率半导体的需求与日俱增。SiC MOSFET尤其如此。作为下一代器件,SiC MOSFET凭借其远超传统硅(Si)MOSFET的功率转换效率,正获得日益广泛的关注。其中,沟槽型SiC MOSFET以其独特的沟槽式栅极降低了导通电阻,SiC肖特基势垒二极管(SBD)则凭借金属半导体结实现了高效的功率转换,它们均广泛应用于电动汽车和可再生能源系统等高效功率转换领域。然而,这些应用场景通常伴随着高温工作环境,对可靠性和效率提升构成了严峻的考验。  沟槽型SiC MOSFET需要保护栅极氧化层免受高电场的影响。然而,由于电场保护结构[6]的UIS耐用性与接地电阻[5]之间的关系尚不明确,因此要同时实现高栅极氧化层可靠性与低导通电阻便极具挑战。  此外,尽管SiC SBD能承受比传统Si SBD更高的工作温度,但需要面对高温下电阻增加进而造成导通电阻变大的问题。  东芝研发了两项关键技术来解决这些问题。  1.提高沟槽型SiC MOSFET的UIS耐用性的技术  东芝研究发现,通过在沟槽型SiC MOSFET的沟槽中构建保护层(图1),并适当降低底部p阱的接地电阻,可提高UIS耐用性。这一发现明确了以往不确定的UIS耐用性与电场保护结构接地电阻之间的关系。与传统的平面型SiC MOSFET相比,东芝制作的沟槽型SiC MOSFET原型将导通电阻降低了约20%(图2)。图1. 沟槽型SiC MOSFET结构及底部p阱位置图2. 传统平面型SiC MOSFET与沟槽型SiC MOSFET的导通电阻比较(东芝测试结果)  2.SiC SJ-SBD特性的改进  此外,东芝还研发了SiC SJ-SBD,通过在漂移层中置入基极[7]来抑制高温下电阻的增加(图3(b))。通过比较传统的SiC SBD(图3(a))和SiC SJ-SBD在不同温度下的导通电阻变化[8],东芝证实了SiC SJ-SBD在高温下具有更低的导通电阻(图4)。这是由于超级结(SJ)结构实现了平坦的电场分布并降低了导通电阻。与传统的SiC SBD相比,东芝研发的650V SiC SJ-SBD在175℃(448.15K)高温下将导通电阻降低了约35%。图3. 传统SiC SBD与SiC SJ-SBD的结构图4. 传统SiC SBD与SiC SJ-SBD 导通电阻  与温度依赖性比较(东芝测试结果)  这两项技术进一步降低了沟槽型SiC MOSFET和SiC SBD的损耗,提高了未来用于高效功率转换应用的器件的可靠性和效率,尤其是在电动汽车和可再生能源系统等领域。东芝将致力于进一步优化这些技术并加速其产业化进程。  在6月1日至5日于日本熊本举行的第37届国际功率半导体器件与IC研讨会(ISPSD 2025 ISPSD)上,东芝介绍了这些新技术的详细信息。此项成就基于新能源产业技术综合开发机构(NEDO)的项目补贴而取得。
2025-06-20 13:34 reading:359
东芝推出符合AEC-Q100标准的双通道车载标准数字隔离器
  6月19日,东芝电子元件及存储装置株式会社(“东芝”)宣布,最新推出一系列面向车载应用的双通道高速标准数字隔离器——“DCM32xx00系列”。该系列有四款器件,可通过100kV/μs(典型值)[1]的高共模瞬态抑制(CMTI)和50Mbps(最大值)[2]的高速数据传输速率,实现稳定运行。所有器件均符合AEC-Q100车载电子器件安全性及可靠性标准,并已开始支持批量出货。  为了保证混合动力汽车(HEV)和纯电动汽车(EV)中的车载充电器(OBC)和电池管理系统(BMS)的安全性和可靠性,所需的器件不仅要求确保隔离,还要求具备防止噪声传播的功能。东芝的最新车载标准数字隔离器可为这些隔离器件所需的多通道高速通信和高CMTI提供卓越的解决方案。  最新的标准数字隔离器采用东芝专有的磁耦合型隔离传输方式实现100kV/μs(典型值)的高CMTI。这可在隔离信号传输中实现高水平的输入输出之间抗电噪声能力,从而实现了稳定的控制信号传输,有助于设备的稳定运行。此外,它们还可实现0.8ns(典型值)[2]的低脉宽失真和50Mbps(最大值)的数据传输速率。这些新产品适用于支持CAN[3]通信的I/O接口等双通道高速通信应用。  东芝的四通道车载标准数字隔离器已量产,目前其产品线已扩展至双通道小型SOIC8-N封装。未来,东芝将进一步扩大其用于汽车及工业设备的通道与封装范围,并将持续地提供高质量隔离器件及光耦合器,以满足汽车设备所需的可靠性和实时数据传输需求。  应用  汽车设备  ● 电池管理系统(BMS)  ● 车载充电器(OBC)  ● 逆变器控制  特性  ● 高共模瞬态抑制:CMTI=100kV/μs(典型值)[1]  ● 高速数据速率:tbps=50Mbps(最大值)[2]  ● 低脉宽失真:PWD=0.8ns(典型值)[2]  ● 支持双通道(请参见主要规格,了解各器件的详细信息):  一个正向通道和一个反向通道;两个正向通道,无反向通道  主要规格  (除非另有说明,否则Topr=-40°C至125°C)
2025-06-20 13:24 reading:298
东芝推出采用DFN8×8封装的新型650V第3代SiC MOSFET
  东芝电子元件及存储装置株式会社(“东芝”)宣布,推出四款最新650V碳化硅(SiC)MOSFET——“TW031V65C”、“TW054V65C”、“TW092V65C”和“TW123V65C”。这些器件配备其最新的[1]第3代SiC MOSFET技术,并采用紧凑型DFN8×8封装,适用于开关电源、光伏发电机功率调节器等工业设备。四款器件于今日开始支持批量出货。  四款新器件是首批采用小型表贴DFN8×8封装的第3代SiC MOSFET的器件,与TO-247和TO-247-4L(X)等通孔型封装相比,其体积减小90%以上,并提高了设备的功率密度。表贴封装还允许使用比通孔型封装更小的寄生阻抗[2]元件,从而降低开关损耗。DFN8×8是一种4引脚[3]封装,支持对其栅极驱动的信号源端子进行开尔文连接。这减少了封装内部源极线电感的影响,实现高速开关性能;以TW054V65C为例,与东芝现有产品相比[5],其开通损耗降低了约55%,关断损耗降低约25%[4],有助于降低设备中的功率损耗。  未来东芝将继续扩大其SiC功率器件产品线,为提高设备效率和增加功率容量做出贡献。  测量条件:VDD=400V、VGS=18V/0V、ID=20A、Ta=25°C、L=100μH,Rg(外部栅极电阻)=4.7Ω  续流二极管采用各产品源极和漏极之间的二极管。(截至2025年5月,东芝对比结果)图1 TO-247与DFN8×8封装的导通损耗(Eon)和关断损耗(Eoff)比较  应用  ● 服务器、数据中心、通信设备等的开关电源  ● 电动汽车充电站  ● 光伏逆变器  ● 不间断电源  特性  ● DFN8×8表面贴装封装,实现设备小型化和自动化组装,低开关损耗  ● 东芝第3代SiC MOSFET  ● 通过优化漂移电阻和沟道电阻比,实现漏源导通电阻的良好温度依赖性  ● 低漏源导通电阻×栅漏电荷  ● 低二极管正向电压:VDSF=–1.35V(典型值)(VGS=–5V)  主要规格
2025-06-17 13:14 reading:368
东芝先进MCU解决方案,让电机控制更高效!
  在当今智能设备和工业自动化领域,电机控制扮演着至关重要的角色。无论是家电产品、工业机器人,还是新能源汽车,高效、精确的电机控制系统都是实现其高性能和节能的关键。东芝半导体推出的TMPM4K系列MCU,正是这样一款为电机控制而生的强大引擎。它不仅拥有强大的处理能力和丰富的外设接口,还集成了东芝先进的电机控制技术,为各种应用场景提供了高效、可靠的解决方案。  TMPM4K系列功能特性分析  TMPM4K系列基于Arm®Cortex®-M4处理器,配备浮点单元(FPU),其工作频率范围从1MHz到160MHz,能够高效处理各种复杂任务。该系列MCU具有灵活的工作电压范围(2.7V至5.5V),可设置低功耗工作模式,适应不同的电源环境。  此外,TMPM4K的内存配置也十分灵活,提供128KB至1MB的代码闪存和32KB的数据闪存,能够承载大量程序和数据,且支持最多100,000次擦写。这使得TMPM4K在需要长时间高效运行的应用中,能够稳定发挥其优势。  TMPM4K系列的最大特点之一是其集成了第四代矢量引擎(A-VE+)和3路高级可编程电机控制电路(A-PMD),使得它在高效电机控制和变频调速领域展现出了显著的优势。该系列MCU支持高精度的3相电机控制,适用于空调、洗衣机、冰箱、电动工具及机器人等各种需要电机控制的消费类产品和工业设备。  A-PMD电路与A-VE+协同工作,可以精确调节电机的转速与负载,使电机控制系统更加高效、精确且能量利用率更高。该系列还支持PFC(功率因数校正)控制,通过优化电源管理,最大化功率输出并减少能源浪费,从而帮助用户实现更低的运行成本。  为了确保电机控制系统的稳定性和高效性,TMPM4K系列配备了12位ADC,提供极高的精度和转换速度。该ADC的转换时间可短至0.91µs,能够实时监测电机运行的状态变化,并根据反馈数据实时调整运行参数,确保电机在不同负载条件下依然能够保持最佳性能。  TMPM4K还集成了自诊断功能,使得系统在运行过程中能够自动检测可能出现的故障,并及时响应,进一步提升了系统的可靠性和稳定性。  灵活的封装与高可靠性设计  TMPM4K系列MCU提供多达6种封装类型,从64引脚到100引脚不等,适用于不同尺寸和功能要求的应用。该系列还具备高工作温度范围(-40°C至+105°C),特别适合用于工业设备及其他对工作环境有较高要求的领域。  此外,TMPM4K系列的防护设计包括5V耐受的I/O端口,并且支持开漏输出和拉高/拉低配置,确保了在复杂电磁环境中的稳定性,尤其是在需要高频次开关操作的应用中。  TMPM4K系列MCU具有丰富的外设接口,包括I²C、SPI、UART等,极大地简化了与外部传感器、执行器和其他控制单元的通信。其内建的DMA控制器(DMAC)和多个定时器模块,支持高效的数据传输和任务调度,极大地提高了开发的便捷性与系统响应速度。  主要特性  ● Arm Cortex-M4处理器(带FPU):工作频率为1至160MHz,带有内存保护单元(MPU)  ● 低功耗模式:工作电压为2.7V至5.5V,4.5V至5.5V(支持所有功能),2.7V至4.5V(不带运算放大器和ADC),低功耗工作模式IDLE,STOP1  ● 工作温度:-40°C至+105°C  ● 内存配置:128KB至1MB代码闪存,32KB数据闪存,24KB至64KB RAM,带有奇偶校验  ● 时钟系统:外部晶体/陶瓷振荡器(6-12MHz),外部时钟输入(6-10MHz),内部高速振荡器(10MHz,可调校),PLL(160MHz输出)  ● 振荡频率检测(OFD):检测异常系统时钟  ● 电压检测(LVD):8级,产生中断并重置输出  ● 中断系统:外部中断(15-20个),外部引脚中断(20-32个,带去抖动滤波),内部中断(93-100个),I/O端口:51至87(输入:2,输出:1),支持5V耐受,开漏,拉高/拉低  ● 片上调试(JTAG/SW),NBDIF(RAM监视器)  ● 触发选择器(TRGSEL):扩展触发请求,用于DMAC、定时器等  ● DMA控制器(DMAC):1个单元  ● CRC计算电路(CRC):支持CRC32、CRC16  ● 异步串行接口(UART):3至4通道  ● 串行外设接口(TSPI):2通道,支持SIO/SPI模式,最大10MHz,FIFO(发射:16位×8,接收:16位×8)  ● I²C接口:2通道,多主机  ● 12位模拟到数字转换器(ADC):14至22输入,分为3个单元,转换时间最短0.91µs支持自诊断功能  ● 运算放大器(OPAMP):3个单元,支持可选增益  ● 高级可编程电机控制电路(A-PMD):3通道  (1)3相互补PWM输出,与ADC同步  (2)PFC控制:支持3相交错PFC  (3)支持通过外部输入实现紧急停止功能(EMG引脚,OVV引脚)  ● 高级矢量引擎增强版(A-VE+):1通道  (1)矢量控制协处理器与ADC/A-PMD配合使用  (2)可扩大1个电流检测区域  (3)死区时间补偿控制,非干扰控制  ● 高级编码器输入电路(32位)(A-ENC32):1、3通道,编码器/传感器(3种类型)/定时器/相位计数器模式  ● 32位定时器事件计数器(T32A)  ● 看门狗定时器(SIWDT):1通道,支持选择除系统时钟以外的时钟系统,清除窗口,中断和重置输出  应用实例:空调室外机3合1控制系统  在空调应用中,TMPM4K系列MCU常被应用于室外机的3合1控制系统,包括压缩机、风机和PFC控制。通过TMPM4K的强大处理能力与精确控制,能够高效地协调各个组件的工作,确保空调在各种环境条件下稳定运行,并提高系统能效,减少能源消耗。  随着智能设备和工业自动化的不断发展,电机控制技术也将迎来更广阔的应用前景。东芝半导体将继续致力于电机控制技术的研发和创新,为用户提供更具竞争力的产品和解决方案。
2025-06-11 16:40 reading:281
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
model brand To snap up
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code