AI Reshaping Fab Operations

发布时间:2017-09-18 00:00
作者:Ameya360
来源:Alan Patterson
阅读量:1107

  Chipmakers are adopting artificial intelligence to boost fab operations, an effort that is starting to pay off, according to Micron Technology.

  Fab managers need to juggle fluid customer demand while simultaneously implementing constantly changing process technologies in multiple manufacturing sites around the globe. All this happens as chipmakers aim to achieve yield and quality targets on a corporate level as quickly as possible, according to Buddy Nicoson, vice president of wafer fabs with Micron.

  During a career spanning more than 30 years, Nicoson has helped manage chip facilities for Samsung, AMD and Cypress Semiconductor. After joining Micron in 2014, he has helped the company launch a first-of-its-kind effort to bring AI technology into fab operations.

  “AI was 25 percent faster to get to the yield target desired compared to previously without these applications,” he said this week in a presentation at the Semicon Taiwan show. “It was 35 percent faster to get to the defect per million (DPM) levels desired than it was before.”

  Micron, which has fabs in the U.S., Japan, Taiwan and Singapore, has been building teams to learn from each other. If someone learns from big data in Taiwan, "we want that propagated through our network as soon as possible," Nicoson said.

  With AI, Micron is shifting fab management from chip facilities to remote control centers.

  “You no longer need the people out in the field that you once did,” according to Nicoson. “You get a broader scope of view if you can set up a remote operating center via dashboards.”

  Every day, Micron pulls in 5 terabytes of data. The company has 3,000 dashboards of data. The company breaks the work down to workstation groups and workstation teams.

  “If you have 13,000 people in your organization, 3,000 is not many dashboards,” according to Nicoson. “We’re trying to translate something very complicated to our folks out there who are working to make a difference. We have to make interface tools that are tangible and that our people can do something with.”

  Demand Forecasting

  One AI application that shows potential is demand forecasting, which is becoming increasingly difficult for unaided humans, according to Bill Wiseman, a senior partner with management consultancy McKinsey.

  “When Apple launches a new iPhone, you better know the best forecast,” he said. “Otherwise, you can’t keep up. If you’re one of the poor souls who has to supply to everyone else besides Apple, who’s going to win? Who do you ship products to? We see tons of overages and write-offs at every point in the value chain.”

  Applying machine learning can provide a better idea of how many chips to supply, he said.

  Nicoson sounds a similar note.

  “Scheduling now is fluid,” he said. “It changes every single minute. If you don’t have schedulers who can adapt to the real-time dynamics of the environment where you are running your factory, you are going to be behind. That can be enhanced through virtualization.”

  No More Silos

  Visualization is what Nicoson calls “a big deal." Comprehensive visualization can reveal hidden losses and hidden waste.

  “If you go out and talk to engineers in the field, one of the frustrations that they have is what I would call siloed views,” he said. “They’ve got to go to one system to look at something, and then they’ve got to go to another system to look at something else.  It’s not comprehensive or cohesive.”

  Unstructured data can be used to eliminate an existing bias Micron has in its data, he said.

  “You end up seeing hidden losses and hidden waste that you could not see before,” according to Nicoson. “Now they become systematic signatures, and you can do something about it.”

  Managing Human Resources

  Machine learning can also tell management when an employee is going to quit, according to McKinsey’s Bill Wiseman.

  “You can watch social networking behavior, how many times employees go to LinkedIn and their email behavior. You can predict employee turnover with an accuracy of about 0.95,” he says.

  By anticipating the result, company management can act and “save” employees before they leave.  The implication is that there will need to be new communications agreements between management and employees, he said.

  Deep Learning

  Deep learning is a technology that’s still in its infancy for chipmakers, according to Nicoson. One aim is to use AI to recognize defects on silicon wafers early in the manufacturing process.

  “It is very similar to facial recognition,” he said. “There are two sides to this: geometric recognition and photometric recognition. It’s very effective in notifying us about a process.”

  The lag in adoption of AI is a bit embarrassing in the semiconductor industry, Nicoson said. The industry is just beginning to combine AI technologies to get value, he noted.

  AI will help to bridge new generations of workers with old ones, according to Nicoson.

  He gave the example of an employee who worked at Micron for 24 years as a photo operator.

  “He’s a very sharp guy who knows everything about photo. We needed to transition him to keep him viable," Nicoson said. "Because of his knowledge and hands-on experience, he became an important mentor to younger generations who understand more about IoT, systems and software but lack the practical applied knowledge.”

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
Tech Giants Launch AI Arms Race, Aiming to Spark a Wave of Smartphone and Computer Upgrades
  According to CNA’s news, the potential business opportunities in artificial intelligence have spurred major tech giants, with NVIDIA, AMD, Intel, MediaTek, and Qualcomm sequentially launching products featuring the latest AI capabilities.  This AI arms race has expanded its battleground from servers to smartphones and laptops, as companies hope that the infusion of AI will inject vitality into mature markets.  Generative AI is experiencing robust development, with MediaTek considering this year as the “Generative AI Year.” They anticipate a potential paradigm shift in the IC design industry, contributing to increased productivity and significantly impacting IC products.  This not only brings forth new applications but also propels the demand for new algorithms and computational processors.  MediaTek and Qualcomm recently introduced their flagship 5G generative AI mobile chips, the Dimensity 9300 and Snapdragon 8 Gen 3, respectively. The Dimensity 9300, integrated with the built-in APU 790, enables faster and more secure edge AI computing, capable of generating images within 1 second.  MediaTek points out that the smartphone industry is experiencing a gradual growth slowdown, and generative AI is expected to provide new services, potentially stimulating a new wave of consumer demand growth. Smartphones equipped with the Dimensity 9300 and Snapdragon 8 Gen 3 are set to be released gradually by the end of this year.  Targeting the AI personal computer (PC) market, Intel is set to launch the Meteor Lake processor on December 14. Two major computer brands, Acer and ASUS, are both customers for Intel’s AI PC.  High-speed transmission interface chip manufacturer Parade and network communication chip manufacturer Realtek are optimistic. The integration of AI features into personal computers and laptops is expected to stimulate demand for upgrades, leading to a potential increase in PC shipments next year.  In TrendForces’ report on November 8th, it has indicated that the emerging market for AI PCs does not have a clear definition at present, but due to the high costs of upgrading both software and hardware associated with AI PCs, early development will be focused on high-end business users and content creators.  For consumers, current PCs offer a range of cloud AI applications sufficient for daily life and entertainment needs. However, without the emergence of a groundbreaking AI application in the short term to significantly enhance the AI experience, it will be challenging to rapidly boost the adoption of consumer AI PCs.  For the average consumer, with disposable income becoming increasingly tight, the prospect of purchasing an expensive, non-essential computer is likely wishful thinking on the part of suppliers. Nevertheless, looking to the long term, the potential development of more diverse AI tools—along with a price reduction—may still lead to a higher adoption rate of consumer AI PCs.  Read more  Key Development Period for AI PCs in 2024; Global Notebook Market Set to Rebound to Healthy Supply-Demand Cycle with an Estimated Growth Rate of 3.2%, Says TrendForce。
2023-11-21 10:41 阅读量:415
Ameya360:EU, U.S. Making Moves to Address Ethics in AI
  The United States and European Union are divided by thousands of miles of the Atlantic Ocean, and their approaches to regulating AI are just as vast. The landscapes are also dynamic, with the latest change on the U.S. side set to roll out today—about seven weeks after a big move in the EU.  The stakes are high on both sides of the Atlantic, with repercussions in practices as disparate as determining prison sentences to picking who gets hired.  The European Union’s Artificial Intelligence Act (AIA), which was approved by the Council of the EU on Dec. 6 and is set to be considered by the European Parliament as early as March, would regulate AI applications, products and services under a risk-based hierarchy: The higher the risk, the stricter the rule.  If passed, the EU’s AIA would be the world’s first horizontal—across all sectors and applications—regulation of AI.  In contrast, the U.S. has no federal law specifically to regulate the use of AI, relying instead on existing laws, blueprints, frameworks, standards and regulations that can be stitched together to guide the ethical use of AI. However, while business and government can be guided by frameworks, they are voluntary and offer no protection to consumers who are wronged when AI is used against them.  Adding to the patchwork of federal actions, local and state governments are enacting laws to address AI bias in employment, as in New York City and the entire state of California, and insurance, with a law in Colorado. No proposed or enacted local law has appeared in the news media to address using AI in jail or prison sentencing. However, in 2016, a Wisconsin man, Eric Loomis, unsuccessfully sued the state over a six-year prison sentence that was based, in part, on AI software, according to a report in The New York Times. Loomis contended that his due process rights were violated because he could not inspect or challenge the software’s algorithm.  “I would say we still need the foundation from the federal government,” Haniyeh Mahmoudian, global AI ethicist at DataRobot, told EE Times. “Things around privacy that pretty much every person in the United States is entitled to, that is something that the federal government should take care of.”  The latest national guideline is expected to be released today by the National Institute of Standards and Technology (NIST).
2023-01-28 14:23 阅读量:2666
AI Market Ramps Everywhere
Artificial Intelligence (AI) has inspired the general populace, but its rapid rise over the past few years has given many people pause. From realistic concerns about robots taking over jobs to sci-fi scares about robots more intelligent than humans building ever smarter robots themselves, AI inspires plenty of angst.Within the technology industry, we have a better understanding about the potential for the technology, but the ways in which it will develop are less clear. Semiconductor Engineering asked the community to assess the status of AI and machine learning (ML) and if they thought the technology was being overhyped.“What makes AI so interesting is that it’s a global phenomenon with universities, established companies, start-ups and even countries all trying to move the game forward as fast as possible,” says Andrew Grant, senior business development director for Vision & AI at Imagination Technologies. “The Fourth Industrial Revolution is perhaps the first where people can see change happening on an almost daily basis.”We are still in the early days of this. “In the technology adoption cycle, this technology has moved past the tech enthusiasts and visionaries that define the early market,” says Markus Levy, head of AI at NXP. “We are now standing at the edge of the chasm, which we are successfully crossing to reach the mainstream market. The good news is we know what it takes to cross this chasm and there are hundreds of companies around the world, including tech bellwether companies, working hard to make that possible. We believe that within the next couple of years this revolutionary technology will have made substantial foray into the mainstream market. Even though we know that this technology is real and not a passing attempt to grow a market, people will continue to use and misuse the buzzwords until they clearly understand the real meanings.”It is the creation of those buzzwords that may separate the technical realities from mainstream’s currently perceptions. “ML is just pattern matching at its core, and often the two words are interchanged to sensationalize ongoing research and industry press releases,” says Sharad Singh, digital marketing engineer for Allied Analytics. “AI is definitely overhyped in the media as the next technological breakthrough that has profound life-changing applications, and institutions are cashing in on the hype to promote themselves.”Some of the changes seen by the mass market may not be life-changing. “It might be overhyped today,” says Benjamin Prautsch, group manager for advanced mixed-signal automation at Fraunhofer EAS. “However, I believe that AI will be a core element in almost every future system. AI won’t be visible—just like the transistor. It’s effect, however, will be. AI will not only add new function to devices, it will also improve the electronic design and design automation, and many other fields.”That is already happening. “AI is broadly deployed today, in many ways you many not notice, such as smart unlock features on your smartphone, using your face or fingerprint, predictive text in your emails and instant messages, and efficient energy-management monitoring,” says Steve Roddy, vice president of special projects in the Machine Learning Group at Arm. “However, some AI applications are overhyped, such as self-driving autonomous cars or companion robots replacing human interaction. The technology just isn’t sufficiently advanced for these kinds of things to be routinely and consistently deployed.”Raymond Nijssen, vice president and chief technologist for Achronix,agrees. “The implications will be much broader than anyone can imagine. We do hear some wild claims, and some of them definitely are overhyped. But it will find its way into our lives and other areas of technology in ways that have not yet been foreseen. There will be a lot of development, but we will encounter some glass ceilings where we had high expectations that will not become reality. That will have a lot to do with where AI is just not intelligent enough.”The term AI itself is problematic. “It is all about context and whose expectations are considered,” says David White, senior group director for R&D in the Custom IC & PCB Group at Cadence. “I believe there are extremes on both sides of the debate. I don’t believe we are anywhere near true machine intelligence that threatens our safety, and I don’t believe that AI and deep learning are pure hype with no redeeming engineering value. My expectations are that AI and deep learning would provide value in real-world systems for specific tasks, and in that context, I believe we are on track.”And context is important. “Zachary Lipton, an assistant professor at Carnegie Mellon University, states that the AI hype is blinding people to its limitations and is dangerous in the long run,” says Allied Analytics’ Singh. “He argues that the current state of AI is poorly understood by the public, as the latter often associates AI with self-aware robots taking over humanity. In reality, machines still have a long way to go before being able to develop human-like intelligence. Legendary physicist Stephen Hawking and Tesla founder Elon Musk have both publicly spoken about the dangers of AI, while Microsoft co-founder Bill Gates believes there’s reason to be cautious.”What complicates the picture is the rate of change. “It’s only a few years since Geoffrey Hinton’s team at the University of Toronto made breakthroughs in CNNs,” points out Grant. “Since then Google, Facebook and others have made many of their own developments available to the wider audience of data scientists, software developers and hardware teams.”Understanding the roots of the technology can help. “If you look at AI, the best way to think about it today is a super-universal curve fitting function,” explains Achronix’s Nijssen. “Anything that fits that mold can make a lot of progress beyond what we see now. But there are other forms of intelligence that are not an extrapolation of patterns or images or sequences of events that have been seen before where actual interpretation and deeper understanding is necessary. Today, that is not part of what is being considered.”The area covered by curve fitting is large. “We still haven’t cataloged all the ways and places where it can be used,” says Peter Glaskowsky, computer system architect at Esperanto Technologies. “Almost anywhere that decisions depend on recognizing repeated patterns, AI will play a role.”Many of these will continue to involve humans. “There are so many areas that will benefit from the combination of person, machine and AI,” says Imagination’s Grant. “With that combination we can begin to tackle problems that would otherwise elude us. In health care, security and economics, for example, the opportunities are literally endless.”Taking the human out of the loop is where problems may start. “During this process, it will be important to understand AI’s decision-making so the quality of decisions can be measured,” warns Fraunhofer’s Prautsch. “If the decision, however, gets too much attention over the process of decision-making, then hidden dangers could arise.”And there will be failures. “There are opportunities within the market for one actor, or one group of actors, to do something that is sub-optimal around AI,” says Marc Naddell, vice president of marketing for Gyrfalcon Technologies. “If they over promote the capability of the solution, that could result in disappointment. That can be used as evidence that AI does not really live up to the billing.”NXP’s Levy tackles this problem. “Every technology has the hype cycle with troughs of disillusionment. We view ML and AI as a natural progression of technological advances that has characterized human evolution for millennia. Look at it this way—humans have become the most successful species because we figured out how to transfer our acquired knowledge, problem-solving skills, and decision-making techniques to our progeny, not through genes, but extra-somatically. We have been doing the same thing to our machines by making them more efficient, smarter, and now the natural progression is to enable them to think. So unlike other technologies, AI & ML are not over-hyped or short-lived. They are fundamental to human nature.”What of machines creating better machines? At present, the furthest we have gone is the employ these techniques to create better silicon. “There is now unprecedented interest and investment in applying ML to chip design,” says Jeff Dyck, director of engineering/R&D at Mentor, a Siemens Business. “This has led to a new generation of ML practitioners in EDA, many of which have a solid academic knowledge of ML. They are now developing promising results in controlled environments. However, we are still learning from the school of ML hard knocks about the challenges of bringing ML methods from the lab to production. Perhaps we are at the early stage of a golden age of ML for chip design, but we need to see the promising techniques in the lab successfully move to production for the value to be realized.”Accelerating development ML and AI run on very sub-optimal hardware today. “We will see AI processing move from CPUs and GPUs to dedicated AI accelerator chips,” says Glaskowsky. “Because these new devices are designed specifically for machine-learning algorithms, they will deliver better performance at lower prices, and they’ll be much more energy-efficient on the same tasks—typically 10 times better than GPUs and 100 times better than CPUs.”And we are beginning to see custom silicon being used. “There are dozens of companies bringing AI chips to market in 2019 and 2020,” says Geoff Tate, CEO of Flex Logix. “Many will miss the mark, but some of them will deliver the goods enabling rapid growth of edge AI. The long-term winners in AI chips will be those who can keep up with the rapid pace of change as neural networks improve.”According to a recent report by Allied Market Research, the global deep learning chip market is projected to reach $29.4 billion by 2025, growing at a CAGR of 39.9 % from 2018 to 2025.Xilinx has jumped into this market in a big way. “They have invested billions in their Everest platform, expected to tape out by 2018 on 7nm technology,” says Sergio Marchese, technical marketing manager for OneSpin Solutions. “Flexible and powerful hardware platforms supporting heterogeneous computing are crucial to accelerate the development and deployment of machine learning and AI-based applications.”We have to look at all metrics. “At some point, it is not just about performance,” warns Naddell. “It is about cost of ownership and that includes energy use.”Achieving that will require a range of devices. “They will cover a wide range of cost and power points,” says Glaskowsky. “There will be AI chips (and IPblocks for SoC designs) that cost less than a dollar. Big standalone chips may cost over a thousand dollars, but will outperform a box full of GPUs costing far more. Most of the world’s AI processing will shift from legacy platforms to optimized solutions as quickly as the new silicon can be manufactured.”Some of those devices are already in consumer devices. “Neural networkaccelerators will become ubiquitous, in every device in our environment—indeed we could call it ambient AI,” says Grant. “As the ability to process complex neural networks increases and the price per device falls, we will see this everywhere, from urban infrastructure to provide advanced services such as traffic and building management and security, to monitoring the elderly in care homes.”There is a lot of work ahead. “The first generation of solutions is not very efficient,” says Nijssen. “Both training and inferencing are done in a very brute-force fashion. GPUs are useful, but they are simple-minded and they don’t allow for things that deviate from just pumping through a lot of MAC functions. There are many techniques that people have not had a chance to try out yet because the field is moving so quickly. Once the dust settles and the way that people do training becomes more uniform, and the algorithms do not change on a daily basis, you will see people pushing down the power consumption curve.”“In the hardware space, it’s critical to have flexible, scalable and energy-efficient hardware that spans all performance points, from CPUs to GPUs and NPUs,” says Arm’s Roddy. “The market is expanding and will continue to ramp up. AI is here to stay.”
2018-12-26 00:00 阅读量:1267
AI Still Has Trust Issues
A lot has been accomplished in the last year to improve comprehension, accuracy and scalability of artificial intelligence, but 2019 will see efforts focused on eliminating bias and making decision making more transparent.Jeff Welser, vice president at IBM Research, says the organization has hit several AI milestones in the past year and is predicting three key areas of focus for 2019. Bringing cognitive solutions powered by AI to a platform businesses can easily adopt is a strategic business imperative for the company, he said, while also increasing understanding of AI and addressing issues such as bias and trust.When it comes to advancing AI, Welser said there’s been progress in several areas, including comprehension of speech and analyzing images. IBM’s Project Debater work has been able to extend current AI speech comprehension capabilities beyond simple question answering tasks, enabling machines to better understand when people are making arguments, he said, and taking it beyond just “search on steroids.” One scenario involved asking a question that had no definitive answer — whether government should increase funding for telemedicine.Just as it’s critical to get AI to better understand what is being said, progress has been made for it to recognize what it sees faster and more accurately, said Welser. Rather than requiring thousands or possibly millions of labeled images to train a visual recognition model, IBM has demonstrated it’s now possible for AI to recognize new objects with as little as one example as a guideline, which makes AI scalable.IBM Research AI introduced a Machine Listening Comprehension capability for argumentative content stemming from its work on Project Debater, pictured with professional human debater, Dan Zafrir, in San Francisco. (Photo Credit: IBM Research).IBM Research AI introduced a Machine Listening Comprehension capability for argumentative content stemming from its work on Project Debater, pictured with professional human debater, Dan Zafrir, in San Francisco. (Photo Credit: IBM Research).Another way that AI learning is becoming scalable is getting AI agents to learn from each other, said Welser. IBM researchers have developed a framework and algorithm to enable AI agents to exchange knowledge, thereby learning significantly faster than previous methods. In addition, he said, they can learn to coordinate where existing methods fail.“If you have a more complex task, you don't have to necessarily train a big system," Welser said. "But you could take individual systems and combine them to go do that task.”Progress is also being made in reducing the computational resources necessary for deep learning models. In 2015, IBM outlined how it was possible to train deep learning models using 16-bit precision, and today 8-bit precision is now possible without compromising model accuracy across all major AI dataset categories, including image, speech, and text. Scaling of AI can also be achieved through a new neural architecture search technique that reduces the heavy lifting required to design a network.All this progress needs to be tempered by the fact AI must be trustworthy, and Welser said there will be a great deal of focus on this in the next year. Like any technology, AI can be subject to malicious manipulation, so it needs to be able to anticipate adversarial attacks.Right now, AI can vulnerable to what are called “adversarial examples,” where a hacker might imperceptibly alter an image such to fool a deep learning model into classifying it into any category the attacker desires. IBM Research has made some progress addressing this with an attack-agnostic measure to evaluate the robustness of a neural network and direct systems on how to detect and defend against attacks.Another conundrum is neural nets tend to be black boxes in that how they come to a decision is not immediately clear, Welser. This lack of transparency is a barrier to putting trust in AI. Meanwhile, it’s also important to eliminate bias as AI is increasingly relied on to make decisions, he said, but it’s challenging.“Up to now we've seen mostly that people have been just so excited to design AI systems to be able to do things," Wesler said. "Then afterwards they try and figure out if they're biased or if they're robust or if they've got some issue with the decisions they're making.”
2018-12-17 00:00 阅读量:1240
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码