意法半导体全新一代主动保险丝熔断<span style='color:red'>驱动器</span>——L9965P
  L9965P产品背景  随着汽车电子电气架构向智能化和安全化方向的不断发展,传统熔断器的局限性日益凸显:无法通过软件实现精准控制,也无法根据故障类型精确判断断路时机。此外,随着主机厂平台化设计逐渐成为主流,传统熔断器难以根据不同车型预设过流阈值,无法满足平台化应用的需求。因此,为了解决上述客户使用中的痛点,熔断器厂商开发了智能可控的Pyro-Fuse(主动式熔断器),现已被广泛应用。  与此同时,新能源汽车在续航里程和补能效率上的激烈竞争,推动了更高容量、更高电压电池包的应用,这对动力电池管理系统的安全性提出了更高要求。然而,传统熔断器以及基于高低边驱动的主动保险丝系统已难以满足日益严格的功能安全要求。  在此背景下,Pyro-Fuse驱动器L9965P应运而生,凭借其卓越性能,已广泛应用于国内主机厂及Tier1的相关项目中,为车辆安全提供了更加可靠的保障。  L9965P的主要应用场景举例  BMS(电池管理系统)  ▲L9965P在BMS系统中的应用  电池包过流场景:  在电池系统发生过流或短路故障时,Pyro-Fuse能够根据BMS的检测信号通过L9965P快速点爆,避免高电流对电池包和其他电气系统造成不可逆损伤。  车辆碰撞场景:  当车辆发生碰撞时,为有效预防可能引发的起火爆燃事故对人体造成的二次伤害,并保护电池包免受不可逆的损害,主动保险丝能够根据有效碰撞信号快速切断高压回路。对比传统被动保险丝,Pyro-Fuse解决了被动保险丝在碰撞下无法零电流切断的痛点。  电驱动系统  ▲L9965P电驱动系统中的应用  在新能源汽车中,主驱系统(包括电池、电机和电控系统)是整车动力输出的核心部分,其安全性和可靠性直接关系到车辆的性能和用户的安全。随着新能源汽车向高电压、大功率方向发展,主驱系统面临更高的安全挑战。Pyro-Fuse作为一种高效的电路保护装置,已逐渐成为主驱系统的重要一环,在故障工况下可以切断三相电机中的两相,防止次生灾害发生。  以下是Pyro-Fuse在新能源汽车主驱系统中的应用举例:在四驱车型中,带有Pyro-Fuse的系统可以在某一电机(前或后驱)系统发生故障时进行断开操作,并继续保持平稳运行;在两驱车型中,带有Pyro-Fuse的系统可以在碰撞发生或驱动系统异常时,切断主驱回路,防止非预期二次伤害——如碰撞后,车轮惯性会带动电机旋转,产生不利的反电动势高压。  面对以上工况,L9965P可以在主驱系统异常时继续自主工作,保证电机驱动回路被切断,避免造成进一步损害,提高主驱系统的安全冗余性能。  L9965P产品性能概览  ❖ AEC-Q100车规级产品  ❖ 深度睡眠模式(极低功耗<10uA)  ❖ 支持三种唤醒模式  ❖ 内部集成Boost升压模块用于外部储能电容充电,升压值可配  ❖ 硬件信号FENL、FENH兼容PWM模式(频率16kHz和125kHz可配)及高/低电平模式;软件信号支持SPI(24bit)独立点爆  ❖ 点爆路径支持请求和自动两种诊断方式  ❖ 最低工作电压支持6V  ❖ 可选的点爆配置——电流及持续时间,与LV-16和USCAR-28认证的高温保险丝相兼容  ❖ 内置NVM模块存储,支持诊断/点爆等信息存储,可实现无MCU运行  ❖ 可配置的连续点爆功能(Auto-retry)  ❖ 兼容配套L9965C等智能接线盒(BJB)高压采集芯片  ❖ 符合ISO26262开发流程,功能安全等级支持ASIL-D  L9965P主要特点优势  ▲L9965P系统应用框图举例  ❖ 多种部署电流配置组合,匹配不同规格Pyro-Fuse的点爆要求  ❖ 内部集成Boost模块,有助减小储能电容容量需求,从而优化系统成本  ❖ 独立的软硬件点爆策略,满足系统的不同点爆需求。硬件点爆模式下电平或PWM模式可选,软件SPI点爆  ❖ 可选的多次自动点爆重试功能(Auto-retry),提高点爆的安全冗余  ❖ 支持手动/自动诊断方式,确保点爆功能的正确实施,其中自动诊断可在无MCU时自主进行,实现不同故障的检测和判断  ❖ TQFP32和QFN32两种封装,符合优化面积的小型化设计  意法半导体电池管理系统产品路线  意法半导体拥有丰富的BMS系列产品,其功能包含有如:模拟前端采样芯片,高压采集智能接线盒芯片、通讯桥接芯片、以及主动保险丝驱动熔断器芯片,它们全面覆盖汽车级、工业级、高压应用及低压应用。汽车级L9963E、L9963T及工业级L99BM114、L99BM1T、L9961目前已在市场中大批量产,目前最新一代的车规级L9965系列产品也已全部量产面市。在未来规划中,意法半导体将进一步加强BMS领域的投入,致力于更加多样化的产品路线拓展,如多串数模拟前端采样芯片并集成电化学阻抗图谱检测功能、48V锂电应用等。
关键词:
发布时间:2025-06-16 10:05 阅读量:509 继续阅读>>
士兰微:车规级SQ9702/3T H桥<span style='color:red'>驱动器</span>:智能栅极驱动,助力高效电机系统
  SQ9702/3T是一款单通道 H 桥栅极驱动器,驱动四个外部 NMOS,用于驱动双向刷式直流电机。  SQ9702/3T具备三种类型控制接口,PH/EN、独立半桥以及PWM。其内部电流采样放大器提供可调的电流控制。其集成的电荷泵可提供 100%占空比支持,而且可用于驱动外部防反电路。  独立半桥模式支持半桥共享,能够顺序控制多个直流电机,以达到最大的成本效益。SQ9702/3T具备通过固定关断时间的PWM电流斩波来调节绕组电流的功能。  SQ9702/3T采用了智能栅极驱动技术,无需外部栅极驱动器件(包括电阻和稳压管),同时可为外部 MOS 提供保护。SQ9703T 的死区时间可进行配置,SQ9702T具有固定的死区时间,其用于避免出现共通击穿问题。SQ9702/3T可通过配置压摆率为降低 EMI 带来便利,还可防止发生任何栅极短路问题。此外,SQ9702/3T提供主动和被动下拉功能,可防止任何 dv/dt引起的栅极误导通。  特点  AEC-Q100,Grade 1:-40°C ~125°C  单通道 H 桥栅极驱动,支持 100%PWM 占空比  工作电压范围:5.5V~45V  三种控制接口选择:PH/EN、独立半桥以及 PWM  SQ9703T具有用于配置的串行接口(SPI)  智能栅极驱动,压摆率可调  支持 1.8V、3.3V 和 5V 的逻辑输入  集成 1 路电流采样放大器,SQ9703T的放大器增益可调  集成 PWM 电流调节功能  低功耗睡眠模式  封装:QFN-32-5x5x0.85-0.5  内部保护功能  ▫ 欠压锁定:电源欠压(UVLO)、电荷泵欠压(CPUV)▫ 过流保护(OCP)▫ 栅极驱动器故障(GDF)▫ 热关断(TSD)▫ 故障输出指示(nFAULT)▫ SQ9703T具有过温警告(OTW)▫ SQ9703T具有看门狗故障输出(nWDFLT)  SQ9703T原理图  整机DEMO
关键词:
发布时间:2025-06-10 09:12 阅读量:348 继续阅读>>
Littelfuse:IXD0579M高压侧和低压侧栅极<span style='color:red'>驱动器</span>提供紧凑型即插即用解决方案
  Littelfuse宣布推出IXD0579M高速栅极驱动器集成电路。IXD0579M简化了电路板设计,节省了空间,并为驱动半桥配置中的N沟道MOSFET或IGBT提供了可靠的多源替代方案。  IXD0579M设计用于在6.5V至18V的宽电源范围内工作,在单个紧凑的3×3mm² TDFN-10封装中集成了一个自举二极管和一个串联限流电阻器,这些元件通常需要分立安装。这种创新的集成设计减少了物料清单上的元件数量和成本,同时也简化了PCB布局。  主要产品特性和优势  高驱动能力:1.5A拉电流和2.5A灌电流输出驱动电流;  宽供电电压范围:在6.5V至18V范围内工作,具有UVLO保护;  集成自举电路:片内自举二极管和电阻简化设计;  逻辑电平兼容性:直接与TTL和CMOS电平(低至3.3V)对接;  交叉传导保护:防止高压侧和低压侧同时导通;  超低待机电流:待机模式下功耗小于1μA,实现高效节能;  热鲁棒性:-40℃至+125℃工作温度范围。  “Littelfuse开发的IXD0579M可直接替代常用的行业标准栅极驱动器集成电路。”Littelfuse集成电路部产品经理June Zhang表示,“这为客户提供了更大的灵活性来保障供应,同时还通过集成方案简化了他们的电路设计。”  IXD0579M是Littelfuse首款同时集成自举二极管和限流电阻的栅极驱动器,进一步丰富了公司日益扩大的功率控制解决方案产品阵容。作为Littelfuse发布的第十一款高压侧/低压侧驱动装置,该产品巩固了公司在服务需要高性能和供应链连续性的“多来源”市场的领先地位。  目标市场和应用  IXD0579M专为高频开关而设计,非常适合用于:  无刷直流(BLDC)电机驱动;  电池供电的手持工具;  DC-DC转换器和电源;  一般工业和电气设备;  紧凑的外形和稳健的性能使其非常适合空间受限的设计和高效功率级应用。
关键词:
发布时间:2025-06-03 13:11 阅读量:498 继续阅读>>
意法半导体车规栅极<span style='color:red'>驱动器</span>提升电动汽车电驱系统的可扩展性和性能
  意法半导体的SiC MOSFET和IGBT电隔离车规栅极驱动器STGAP4S可以灵活地控制不同额定功率的逆变器,集成可设置的安全保护和丰富的诊断功能,确保电驱系统通过ISO 26262 ASIL D认证。STGAP4S驱动器集成模数转换器(ADC)和反激式电源控制器,功能丰富,取得了功能安全标准认证,适用于设计可扩展的电动汽车电驱系统。  STGAP4S的设计灵活性归功于输出电路,该电路允许将高压功率级连接到外部MOSFET的推挽式缓冲电路,以调整栅极电流。这种架构让工程师能够利用STGAP4S及其丰富的功能来控制不同额定功率的逆变器,包括多个功率开关管并联的高功率设计。该驱动器仅用非常小的MOSFET,就可以产生高达几十安的栅极驱动电流,并能够处理高达1200V的电压。  在驱动器的重要功能中,先进的诊断功能有助于对安全要求严苛的应用达到系统安全完整性标准ISO 26262 D级(ASIL-D)认证。自检功能可以验证连接的完整性、栅极驱动电压和去饱和以及过流检测等内部电路是否正常工作。主控制器通过芯片的SPI端口读取诊断状态寄存器内的数据。此外,两个硬件诊断引脚也可以提供故障状态信号。  STGAP4S具有主动米勒箝位、欠压和过压锁定(UVLO、OVLO)以及去饱和、过电流和过热检测等保护功能,实现稳健可靠的设计,满足严格的可靠性要求。该产品具有很高的设计灵活性,准许设计人员通过SPI端口配置一些参数,包括保护阈值、死区时间、去毛刺滤波。  STAGP4S还集成了一个带全面保护功能的反激电源控制器,为高压侧电路供电以生成正负栅极驱动电压,提高SiC MOSFET的开关速度和能效。高压侧和低压侧电路之间有6.4kV的电隔离能力。
关键词:
发布时间:2025-05-29 15:00 阅读量:329 继续阅读>>
ROHM首款面向高耐压GaN器件驱动的隔离型栅极<span style='color:red'>驱动器</span>IC开始量产
  5月27日,全球知名半导体制造商ROHM(总部位于日本京都市)宣布,推出一款适用于600V级高耐压GaN HEMT驱动的隔离型栅极驱动器IC“BM6GD11BFJ-LB”。通过与本产品组合使用,可使GaN器件在高频、高速开关过程中实现更稳定的驱动,有助于电机和服务器电源等大电流应用进一步缩减体积并提高效率。  新产品是ROHM首款面向高耐压GaN HEMT的隔离型栅极驱动器IC。在电压反复急剧升降的开关工作中,使用本产品可将器件与控制电路隔离,从而确保信号的安全传输。  新产品通过采用ROHM自主开发的片上隔离技术,有效降低寄生电容,实现高达2MHz的高频驱动。通过充分发挥GaN器件的高速开关特性,不仅有助于应用产品更加节能和实现更高性能,还可通过助力外围元器件的小型化来削减安装面积。  另外,隔离型栅极驱动器IC的抗扰度指标——共模瞬态抗扰度(CMTI)*¹达到150V/ns(纳秒),是以往产品的1.5倍,可有效防止GaN HEMT开关时令人困扰的高转换速率引发的误动作,从而有助于系统实现稳定的控制。最小脉冲宽度较以往产品缩减33%,导通时间缩短至仅65ns。因此,虽然频率更高却仍可确保最小占空比,从而可将损耗控制在更低程度。  GaN器件的栅极驱动电压范围为4.5V~6.0V,绝缘耐压为2500Vrms,新产品可充分激发出各种高耐压 GaN器件(包括ROHM EcoGaN™系列产品阵容中新增的650V耐压GaN HEMT“GNP2070TD-Z”)的性能潜力。输出端的消耗电流仅0.5mA(最大值),达到业界超低功耗水平,另外还可有效降低待机功耗。  新产品已于2025年3月开始量产(样品价格:600日元/个,不含税)。另外,新产品也已开始网售,通过电商平台均可购买。  EcoGaN™是ROHM Co.,Ltd.的商标或注册商标。  <开发背景>  在全球能源消耗逐年攀升的背景下,节能对策已成为世界各国共同面临的课题。尤其值得注意的是,据调查“电机”和“电源”消耗的电量约占全球总用电量的97%。改善“电机”和“电源”效率的关键在于采用碳化硅(SiC)和氮化镓(GaN)等新材料制造的、负责功率控制和转换的新一代功率器件。  ROHM充分发挥其在硅半导体和SiC隔离型栅极驱动器IC开发过程中积累的技术优势,成功开发出第一波产品——专为GaN器件驱动而优化的隔离型栅极驱动器IC。未来,ROHM将配套提供GaN器件驱动用的栅极驱动器IC与GaN器件,为应用产品的设计提供更多便利。  <应用示例>  ◇ 工业设备:光伏逆变器、ESS(储能系统)、通信基站、服务器、工业电机等的电源  ◇ 消费电子:白色家电、AC适配器(USB充电器)、电脑、电视、冰箱、空调  <术语解说>  *1) 共模瞬态抗扰度(CMTI)  隔离型栅极驱动器的主要参数之一,指产品对短时间内发生的电压急剧变化的耐受能力。特别是驱动GaN HEMT等转换速率较高的器件时,容易产生急剧的电压变化,通过采用CMTI性能优异的栅极驱动器,可有效防止器件损坏,并降低电路的短路风险。
关键词:
发布时间:2025-05-28 09:04 阅读量:346 继续阅读>>
华润微集成电路“降压型LED恒流<span style='color:red'>驱动器</span>QPT4115”荣获“2025年度汽车电子·金芯奖”创新应用奖
  2025年5月14-15日,由中国集成电路设计创新联盟、中国汽车芯片产业创新战略联盟、上海市汽车工程学会联合主办的第十二届汽车电子创新大会暨汽车芯片产业生态发展论坛(AEIF 2025)在上海召开。  大会期间,华润微集成电路(无锡)有限公司(以下简称ICBG)研发的"降压型LED恒流驱动器QPT4115"荣膺“2025年度汽车电子·金芯奖”创新应用奖。该奖项经《国产车规芯片可靠性分级目录》编委会专家评选,是汽车电子领域具有标杆意义的荣誉。  2025年5月14-15日,由中国集成电路设计创新联盟、中国汽车芯片产业创新战略联盟、上海市汽车工程学会联合主办的第十二届汽车电子创新大会暨汽车芯片产业生态发展论坛(AEIF 2025)在上海召开。  大会期间,华润微集成电路(无锡)有限公司(以下简称ICBG)研发的"降压型LED恒流驱动器QPT4115"荣膺“2025年度汽车电子·金芯奖”创新应用奖。该奖项经《国产车规芯片可靠性分级目录》编委会专家评选,是汽车电子领域具有标杆意义的荣誉。  ICBG依托深厚的技术积累和对市场需求的精准把握,打造了自主创新的车规级芯片技术矩阵,为智能汽车提供「感知-决策-执行」全链路解决方案,并已成为多家头部新能源车企的战略供应商。未来,ICBG将秉持创新引领发展的理念,专注于研发具有全球竞争力的车规级芯片,为汽车电子领域提供高性能、高可靠性的核心部件产品。
关键词:
发布时间:2025-05-19 09:31 阅读量:458 继续阅读>>
Littelfuse:适用于高频功率应用的IXD2012NTR高压侧和低压侧栅极<span style='color:red'>驱动器</span>
  Littelfuse宣布推出高压侧和低压侧栅极驱动器IXD2012NTR,设计用于驱动两个采用半桥配置的N沟道MOSFET或IGBT。该IXD2012NTR针对高频电源应用进行了优化,具有卓越的开关性能和更高的设计灵活性。  IXD2012NTR可在10V~20V的宽电压范围内工作,并在自举操作中支持高达200 V的高压侧开关,其逻辑输入与低至3.3 V的标准TTL和CMOS电平兼容,可确保与各种控制设备无缝集成。IXD2012NTR具有1.9A拉电流和2.3A灌电流输出能力,可提供强大的栅极驱动电流,是高速开关应用的理想选择。  该器件集成的交叉传导保护逻辑可防止高压侧和低压侧输出同时开启,同时通过高集成简化了电路设计。IXD2012NTR采用紧凑型SOIC(N)-8封装,工作温度范围在-40℃~+125℃,即使在恶劣工况条件下也能提供可靠的性能。  主要功能和特点  高速开关性能:驱动两个采用半桥配置的N沟道MOSFET或IGBT;  宽工作电压范围:10V~20V,适合各种电源管理应用;  高压侧开关能力:在自举配置下,最高工作电压可达200V;  兼容性和灵活性:逻辑输入兼容低至3.3V的TTL和CMOS电平,便于与控制器连接;  输出电流驱动能力:1.9A拉电流输出和2.3A灌电流输出,可提供稳定的栅极驱动电流;  提高效率和集成度:集成的交叉传导保护可降低功率损耗并简化设计;  行业标准引脚排列:确保现有设计的直接替换能力。  Littelfuse半导体业务部集成电路事业部产品经理June Zhang表示:“IXD2012NTR可直接替代常用的行业标准栅极驱动设备,我们产品组合中的这一新增成员为客户提供了可靠的替代电源,以满足苛刻的生产计划,同时提供卓越的高速性能。”  适用于多样化的市场和应用  IXD2012NTR通过提供新的200V器件,增强了Littelfuse高压侧和低压侧栅极驱动器产品组合,支持各种高频应用,包括:  直流-直流转换器;  交流-直流逆变器;  电机控制器;  D类功率放大器。  IXD2012NTR适用于以下多个市场:  一般工业和电气设备;  家用电器;  楼宇解决方案;  储能;  太阳能;  电动工具。
关键词:
发布时间:2025-05-13 10:40 阅读量:479 继续阅读>>
一文了解荣湃双通道隔离<span style='color:red'>驱动器</span>的应用推荐
  隔离栅极驱动器的应用场景较为复杂和多样,在一些高频、大功率和存在噪声的场景下,隔离栅极驱动器可能会出现误动作甚至导致器件损坏。同时,不合理的PCB布局和外围电路设计也可能会导致上述问题。因此,本文基于Pai8233X系列隔离栅极驱动器,从芯片的基本应用建议、芯片高压侧多路供电方案到栅极驱动器中输入窄脉冲的影响,讨论了芯片在应用过程中可能存在的风险,旨在给出适当建议缓解上述风险带来的不利影响。  一、应用建议  1.1供电选项图1 Pai8233X(WB SOIC-14)引脚定义及去耦电容的连接  Pai8233X(WB SOIC-14)的引脚定义如图1所示,其逻辑侧供电范围为3-5.5V;高压侧的VDDA/VDDB能够接受最大25V的工作电压,而其供电的下限则需参考不同型号的UVLOon。此外,为减少电源纹波和过电压应力事件,在逻辑侧推荐VCCI引脚至GND引脚采用100nF和1uF的低ESR和低ESL的陶瓷电容并联组合。同理,在高压侧推荐VDDX引脚至VSSX引脚采用100nF和10uF的低ESR和低ESL的陶瓷电容并联组合。如无充裕布板空间,至少应保证逻辑侧VCCI引脚至GND引脚接有100nF、高压侧VDDX引脚至VSSX引脚1uF的去耦电容。需要注意的是,去耦电容应紧邻VCCI/VDDX引脚和GND/VSSX引脚放置。  1.2考虑设置输入端口滤波器  当输入信号在PCB上的走线较长或由于布局不理想而导致输入信号存在噪声,推荐在INA和INB端口设置RIN-CIN滤波器以滤除这些噪声,如图2所示。通常推荐RIN为0-100Ω和CIN为10-100pF的组合。具体阻值和容值的选择,需要考虑信号的抗扰性能和传播延时的良好平衡。例如,由RIN=51Ω和CIN=33pF组成的低通滤波器的截止频率约为100MHz。另外,其他输入端口,如DT和DISABLE脚也可设置RC滤波器以获得更好的抗噪性能。图2 Pai8233X输入端口滤波器  1.3栅极驱动电阻选择图3 栅极驱动电阻  栅极驱动电阻如图3所示。合理的栅极驱动电阻选择能够有效改善由功率管开关时寄生电感/电容、高dv/dt、高di/dt和体二极管反向恢复造成的振铃。同时也有利于改善EMI问题,以及调整栅极的驱动能力以减少功率管开关损耗。栅极驱动电阻直接影响到驱动电流、开关损耗和上升/下降时间。另外,栅极驱动电阻的选择也影响芯片的散热,利用串联栅极驱动电阻能够使得一部分热量通过该电阻散热。因此,设计者需要综合系统的性能参数,选择合适的栅极驱动电阻。  还需说明的是,峰值源/灌电流还受PCB布局和负载电容的影响,同时栅极驱动器环路中的寄生电感会减缓峰值栅极驱动电流,并造成过冲和下冲。因此,在PCB布局上,要使驱动环路尽可能地短,以减少上述问题的影响。  1.4 PCB布局指南  良好的PCB布局对于提升功率管开关性能至关重要,一般而言,在PCB布局时,推荐遵循如下原则:  · 为抑制电源纹波和提升稳压性能,低ESR和低ESL的陶瓷电容需连接至器件VCCI和GND、VDDX和VSSX之间,并确保去耦电容尽可能靠近器件的电源引脚和地的引脚。  · 确保芯片的电源引脚对地的距离要尽可能地短。因为过长的电源对地走线会存在较大的寄生电感,从而导致器件更容易遭受过电压应力的风险。如果PCB为多层板,推荐在VDDX和VSSX之间设置足量的过孔连接,但应注意不要与其他涉及高压的走线和覆铜相连接。  · 为避免在开关节点(如图3 USW)上产生负瞬态,需确保上下管的源极之间的走线尽可能地短,以减少二者之间的寄生电感。  · 推荐在DT和DISABLE引脚附近设置旁路电容,以提升该端口的抗噪性。  · 为确保隔离驱动的爬电距离、电气间隙等隔离性能不受影响,不建议在芯片下方放置任何 PCB 走线、覆铜、焊盘和过孔。  · 当芯片驱动功率管时,OUT存在非常高的 di/dt,OUT环路PCB走线寄生电感会导致 EMI 和电压振荡问题,因此,芯片应尽可能靠近功率管,OUT走线尽可能宽,环路走线尽可能短,以降低环路寄生电感。  · 当负载电容较大或开关频率较高时,芯片的功耗也会随之增大,因此在PCB设计时,热量的传导也应被考虑在内。推荐增加高压侧VDDX和VSSX的覆铜,尤其是增加VSSX的覆铜面积。另外,在栅极驱动电阻上也会消耗一部分热量,因此也需要注意栅极电阻的选择。  备注:以上PCB布局指南在实际的应用中可能难以全部满足,但以上指南的前两点应尽可能地实现。主要原因是在实际产品应用过程中,芯片损坏的主要原因之一便是EOS损伤,而导致此损伤的根因一般是去耦电容摆放的位置离芯片较远或是电源引脚对地的距离较远。而其他布局推荐则需要根据实际系统对栅极驱动器的抗扰性、隔离性能、负瞬态要求和散热性等要求,对PCB的布局作适当权衡。  2 Pai8233X系列供电方案  常见的供电方案有Flyback供电方案和自举电路供电方案,以下将介绍这两种方案的实现。  2.1为隔离栅极驱动器设计自举电荷泵电源  下图展示了Pai8233X自举电路的典型应用。图5 Pai8233X自举电路应用框图  如图5所示的自举电荷泵电源,能在保证顺利驱动上下管的前提下减少一路电源的供电。可从图5中看到,自举电路由自举电阻、自举二极管和自举电容组成。以下给出了自举电路中电阻、二极管和电容的选取原则:  2.1.1自举二极管的选取  自举二极管用于防止上管导通期间VDDA引脚处电压向供电VDDB倒灌。自举电容CBOOT在下管导通期间通过供电VDDB充电,自举电容充电的过程中会存在尖峰电流,因此二极管中的瞬态功率耗散可能是显著的。导通损耗也取决于二极管的正向电压降,同时二极管反向恢复损耗也会一定程度上影响栅极驱动器的总功耗。当选择外部自举二极管时,建议选择高电压、快速恢复二极管或具有低正向电压降和低结电容的SiC肖特基二极管,以便将损耗最小化。  2.1.2自举电阻的选取  自举电阻RBOOT用于减少自举二极管的涌入电流并限制VDDA-VSSA在每个开关周期的电压上升速率,特别是当VSSA(SW)引脚具有较大的负瞬态电压。RBOOT的推荐值在1Ω和20Ω之间,具体取决于所使用的二极管。举个例子,选择2.2Ω的限流电阻器来限制自举二极管的涌入电流。  2.1.3自举电容的选取  自举电容CBOOT用于在上管导通期间维持稳定的上管栅极驱动电压,并允许高达6A的栅极驱动电流瞬变。每个开关周期所需的总电荷可以通过下式计算:  • 其中,QG为功率管的栅极电荷;  • IVDDA通道在工作频率下空载时的自电流损耗;  • ΔVVDDA为VDDA的电压纹波;  • VGA功率管栅极开通电压;  • RGA功率管栅源电阻;  • TSW/TON分别为开关周期和开通时间。  需要注意的是,由于直流偏置电压和温度变化引起的电容偏移,CBOOT的实际选取值总是大于计算值。  2.2为隔离栅极驱动器设计Flyback供电电源  下图展示了Pai8233X Flyback供电方案的典型应用框图。图6 Pai8233X Flyback供电方案应用框图  通过Flyback变换器,能够使得VDDA与VDDB实现隔离,Flyback变换器除了易于实现外,相比于自举电路供电方案,其隔离栅极驱动器的A通道的对地电压应力更小。因此有条件的前提下,更加推荐采用Flyback供电方案实现隔离栅极驱动器高压侧的多路供电。  对于上述的Flyback电路,在电路的原边涉及到PWM控制,可能会给设计者带来额外的工作量,更为方便的做法是直接采用集成了MOSFET的Flyback控制芯片来代替上述的MOS管。  3. 隔离栅极驱动器电路中  窄脉冲宽度的影响  在某些大功率、高频的电源拓扑中,来自于电源、栅极或输入振铃的噪声耦合可能会导致栅极驱动器工作异常甚至损坏。极端占空比(接近0或100%)以及ns级的导通/关断时间可能会导致出现过电压应力(EOS)从而损坏栅极驱动器。以下内容将从窄脉冲发生的原因、影响因素、导致结果和设计建议几个方面具体阐述。  3.1典型MOSFET开通/关断时间  典型MOSFET的开通/关断周期如图8所示,栅极驱动器的输出级为MOSFET 的栅极充电,来达到给定 MOSFET 的目标栅源电压(VGS),以及在米勒平坦区域期间施加最大驱动强度,以将栅极充电至最大驱动电压。当栅极达到目标电压VGS 且栅极电流 (IG) 为零时,此时MOSFET便完成了一个完整的开通周期。需要注意的是,规格书中的最小脉冲宽度规格只描述了空载驱动器 (COUT=0pF) 的功能,而不保证在其他情形下该脉冲是有效的。因此,在不同场景下,最小脉冲宽度都是不同的,最小脉冲宽度在特定系统中一般受栅极电容、VDD 供电电压、栅极电阻、峰值电流和PCB寄生参数等因素影响。图8 典型MOSFET开通/关断周期  3.2功率级中发生窄输入脉冲的原因  AC/DC电源将电网侧交流输入电压转换为稳定的DC电压,该器件包含功率因数校正 (PFC) 级,可减少谐波并保护电网。在图腾柱 PFC 配置和三相全桥 PFC 设计中,在每个交流输入过零处,对于快速开关 MOSFET,占空比非常短。在某些设计中,通过在过零处实现软启动,以避免出现较大的电流尖峰。在这种类型的设计中,在过零后重新启动时,可以将电源开关的占空比控制在一个非常低的值。  在硬开关直流/直流转换器系统中,输出电压会在负载暂态期间(无论是从空载到高负载,还是从高负载到低负载)波动。在这些条件下,主驱动器可以发送超低或高占空比命令来根据外部电压环路反馈信号进行调整。图9 窄开通脉冲和窄关断脉冲示意  3.3窄输入脉冲对于隔离栅极驱动器的影响和后果  栅极驱动器的输出级在切换MOSFET开通/关断状态时提供源电流和灌入电流,在Pai8233X内部有一个上拉和下拉结构,以便于缓冲输入信号的同时,提供足够的驱动能力对栅极电容进行充放电。  在收到窄导通脉冲情况下,驱动器在几十ns后又收到关断信号,此时MOSFET导通过程尚未完成,内部图腾柱上拉级仍持续传导非常高的电流 (IG >> 0)。并且,在实际栅极驱动电路中,存在与VDD串联的PCB布线的寄生电感Lpcb(如图11 所示),同时也存在内部驱动器寄生电感Lbw。因此,VDD 处的总电感通常会超过 10nH。当驱动电流突然被切断时,较大的寄生电感会导致显著的电压尖峰,从而导致电压超过建议运行条件,在某些情况下甚至超过绝对最大额定值,这成为窄脉冲损坏隔离栅极驱动器的主要原因。  同样,窄关断输入脉冲(接近 100% 占空比)也可能导致 OUT 和 VDD 过载。在窄关断脉冲情况下,当驱动器收到导通命令时,MOSFET 关断过程尚未完成,内部图腾柱下拉级仍持续传导非常高的电流 (IG >> 0)。大寄生电感和突然的电流变化会导致输出引脚上出现显著的电压尖峰。当 OUT 电压高于 VDD 电压时,它也会进一步对 VDD 引脚施加应力。  结合上述说明,可以得知窄输入脉冲的主要影响是高di/dt使得较大的寄生电感感应出显著的电压尖峰。di/dt的影响因素包括窄脉冲宽度(如图8所示,发生开通/关断的时机越早,对应的栅极电流越大)、和栅极偏置电压、栅极电阻、栅极电容等因素。因此在设计时,需要在驱动能力和考虑窄脉冲的影响之间作一定的权衡。  3.4缓解窄输入脉冲影响的手段  下表展示了在实际系统设计时,易受窄脉冲影响的驱动器外围电路设置的场景以及对应的解决方法。表1 易受窄脉冲影响的场景和缓解手段  3.5非理想PCB布局下窄脉冲宽度限制  实际PCB布板时,可能难以实现理想PCB布局,如去耦电容离芯片管脚(电源经去耦电容到地的环路)距离大于2cm 。在这类情况下,建议严格限制窄脉冲宽度以保护器件在安全的工作范围内运行,通常需要限制脉冲宽度为大于100ns。
关键词:
发布时间:2025-05-12 14:00 阅读量:375 继续阅读>>
Murata Electronics 微型鼓风机MZBD评估<span style='color:red'>驱动器</span>
川土微电子CA-IS3211隔离栅极<span style='color:red'>驱动器</span>新品面市!
  川土微电子CA-IS3211单通道隔离式栅极驱动器新品发布!可完全兼容传统光耦栅极驱动器,可靠性和寿命高于传统光耦。  01产品概述  CA-IS3211是一款光耦兼容的单通道隔离式栅极驱动器,可用于驱动MOSFET、IGBT和SiC器件。隔离等级达到5.7kVRMS,芯片可提供5A拉、6A灌输出峰值电流能力。  高达30V的电源电压范围允许使用双极性电源来有效驱动IGBT和SiC功率FET。该芯片的性能亮点包括:高共模瞬态抗扰度(CMTI)、低传输延迟、低脉冲宽度失真。严格的工艺控制使得芯片一致性较好。输入级是模拟二极管,与传统的光耦隔离栅极驱动器的LED相比,具有更好的长期可靠性和老化特性。高性能和高可靠性使得该芯片适用于工业电源、光伏逆变器、车载充电器、直流电机控制以及汽车空调与加热系统。CA-IS3211可以驱动高压侧及低压侧的功率管,既能够完全兼容传统的光耦栅极驱动器,又显著提高了驱动的性能。  02产品特性  • 光耦输入的5.7kVRMS单通道隔离式栅极驱动器  • 输出峰值电流:5A拉/6A灌  • 最大30V输出驱动电源电压  • 8V(B)或12V(C)VCC欠压锁定阈值  • 轨到轨输出  • 70ns(典型值)传输延迟  • 25ns(最大)部件对部件延迟匹配  • 35ns(最大)脉冲宽度失真  • 150kV/μs(最小)共模瞬态抗扰度(CMTI)  • 隔离栅寿命大于40年  • 输入级最高反向耐压7V,并支持互锁  • 宽体SOIC6-WB/SOIC8-WB封装,气隙和爬电距离大于8.5mm  • 工作结温范围TJ:-40°C到150°C  03应用  • 工业电机控制驱动器  • 工业不间断电源(UPS)  • 太阳能逆变器  • 充电桩  • 储能变流器  04应用框图
关键词:
发布时间:2025-05-06 17:54 阅读量:442 继续阅读>>

跳转至

/ 9

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码