海凌科:新款智能<span style='color:red'>开关</span>门雷达感应器 支持小程序控制
  海凌科智能自动门雷达感应器探头HLK-LB1001,轻松实现感应到人智能开关门,支持小程序控制,感应距离5米,使用简单,性价比高。  智能开关门已然成为生活中随处可见的基础设施。与传统的智能开关门不同,HLK-LB1001雷达传感器不仅可以实现自动门的智能开关,同时还支持用户个性化设置。  用户可以通过小程序控制感应门,支持一个手机实时控制多个开关门,自定义设置15个空间区域,用户可根据不同的使用场景调节设备,提升用户使用体验。       产品参数:  智能开关:人来开门,人走关门  HLK-LB1001雷达感应器,可轻松实现“人来开门,人走关门”,适用范围广,可适用于所有感应门,同时可根据不同的使用场景来个性化设置,满足用户的多样化需求。  极简交互:微信生态无缝融合  HLK-LB1001雷达感应器,在传统设备的基础上,无需遥控器,无需手动开关,无需下载APP,微信搜索“海凌物联小程序”,点击“雷达感应智能门禁”,即可通过小程序一键调参。  用户根据小程序和使用手册调节设备即可,无需理解雷达技术原理,大幅降低学习成本。  集中管理:支持同时控制多个感应门  HLK-LB1001雷达感应器,用户通过单一手机界面实时控制并操作多个门的开关状态,支持给不同的自动门自定义命名来进行区分,提升管理效率。  个性化设置:自定义调节距离、延时等参数  HLK-LB1001雷达感应器,用户通过手机小程序快速调参,可调节感应距离、延时时间等参数,便于用于根据应用场景个性化设置。  同时,产品支持手动按键控制开关门,以便于应对特殊情况。  HLK-LB1001雷达感应器模块适用于商场、写字楼、住宅、医院、地铁站内,精准感应行人,自动开关门,提升通行效率,打造便捷科技化出入体验,让通行更智能流畅。
关键词:
发布时间:2025-03-31 13:51 阅读量:189 继续阅读>>
工程师如何处理<span style='color:red'>开关</span>电源的磁芯损耗?
  在开关电源设计中,总会碰见各种各样的损耗,其中之一是磁芯损耗,由磁滞损耗和涡流损耗组成,难以直接估测,需要精确计算与合理选择磁芯材料来控制。  1知晓磁芯损坏的组成  磁滞损耗:与磁芯偶极子重新排列相关,正比于频率和磁通密度。  涡流损耗:由交变磁通在磁芯中产生的局部电流导致,表现为I²R损耗。  2选择合适的磁芯材料  优先选用低损耗磁芯:如铁镍钼磁粉芯(MPP),其损耗低于其他常见铁粉磁芯。  权衡成本与性能:虽然铁粉芯成本较低,但磁芯损耗较大,需根据具体应用需求选择。  3精确计算磁芯损耗  确定峰值磁通密度:利用公式B = (L * ΔI) / (N * A),其中L为电感,ΔI为电感纹波电流峰峰值,A为磁芯横截面积,N为线圈匝数。  查阅磁芯损耗曲线:根据磁芯制造商提供的磁通密度与磁芯损耗(和频率)图表,估算磁芯损耗。  4利用专业工具辅助设计  下载并使用制造商提供的计算软件:如某公司的在线电感磁芯损耗和铜耗计算公式,快速准确估算损耗。  模拟与验证:通过仿真软件模拟不同磁芯与电感参数下的损耗情况,进行验证与优化。  5实时热管理措施  设计有效的散热路径:确保磁芯及其周边组件的热能能够高效散出。  监控温度:在实际应用中,通过温度传感器监控磁芯温度,及时调整设计或增加散热措施。  6持续优化与迭代  收集应用数:在实际应用中收集磁芯损耗与温度数据,分析损耗来源。  迭代设计:根据数据分析结果,调整磁芯材料、电感参数或散热设计,持续降低磁芯损耗。
关键词:
发布时间:2025-03-28 14:43 阅读量:210 继续阅读>>
<span style='color:red'>开关</span>性能大幅提升!安森美M3S 与M2 SiC MOSFET直观对比
  安森美 (onsemi)的1200V 分立器件和模块中的 M3S 技术已经发布。M3S MOSFET 的导通电阻和开关损耗均较低,提供 650 V 和 1200 V 两种电压等级选项。本白皮书侧重于探讨专为低电池电压领域的高速开关应用而设计的先进 onsemi M3S 650 V SiC MOSFET 技术。通过各种特性测试和仿真,评估了 MOSFET 相对于同等竞争产品的性能。第一篇介绍SiC MOSFET的基础知识、M3S 技术和产品组合。本文为第二篇,将介绍电气特性、参数和品质因数、拓扑与仿真等。  电气特性、参数和品质因数  在本小节中,我们将比较 M3S SiC MOSFET (NVBG023N065M3S) 与 M2 器件 (NVBG060N065SC1) 以及竞争器件。我们选择了导通电阻和峰值电流均非常相似的表面贴装器件 (SMD) 作为开关,并在不同条件下进行了特性测试,以比较各器件的重要参数。  a. 静态参数  器件的导通损耗可以用关键参数 RDS(on)来衡量。因此,本小节在 25°C 和 175°C 结温下测量了器件的 RDS(on)特性。此外还在 15 V 和 18 V 两个不同的栅极-源极电压下进行了测量,其中导通脉冲宽度为 300 µs。  测试得出的主要结论是NVBG023N065M3S 器件在各种电流水平下均具有稳定的 RDS(on)。NVBG023N065M3S 的 RDS(on)从 5 A 到 100 A 的偏差为 13%,而 NVBG060N065SC1 和竞争产品 A 的对应数值分别为 25% 和 26%。  b. 动态参数  SiC 器件的反向恢复电荷比 Si MOSFET 少,因此开通峰值电流更小,开通开关损耗也更低。为了更好地理解和量化开关损耗,通常使用 Ciss、Coss、Crss和 Qrr等关键参数进行评估。在大多数高功率应用中,Ciss、Coss、Crss的电压水平一般都超过 10 V。米勒电容 (Crss) 至关重要,因为它可以耦合漏极和栅极电压。  在开关过程中,较低的 Crss减少了改变 MOSFET 状态所需提供或从栅极移除的电荷量。这使器件能够更快地在开通和关断状态之间进行转换,从而缩短电压电流同时较高的时间,减少开关损耗。图3比较了 M3S、M2 和竞争产品 A 之间的电容。  安森美的新一代产品 NVBG023N065M3S 在 VDS≥ 11V 时的 Crss值较低,这有助于减少导通和关断开关损耗。此外,NVBG023N065M3S 的 Coss值非常接近竞争产品,并且在某些电压水平下优于其他器件。  本文测量了几种负载电流条件下两种器件的开关损耗。测量过程采用双脉冲测试设置,测试条件设定如下:  Vin= 400 V,  Rg= 2 Ω − 4.7 Ω,  Vgs_on= +18 V,  Vgs_off= −3 V,  开关电流 = [5A, 100A]  每个器件的内部栅极电阻不同,因此总栅极电阻匹配为 6 Ω。下图为这三个器件在 25°C 时的开通、关断和总开关损耗。  可以得出结论,与其他两款器件相比,NVBG023N065M3S 的开通和关断损耗更低。在 5 A 至 100 A 的负载电流范围内,NVBG023N065M3S 的平均总损耗与上一代器件 NVBG060N065SC1 相比减少了 31%,与竞争产品 A 相比减少了 42%。  进行反向恢复测试时,漏极电流为 ID= {20 A, 40 A, 60 A},总栅极电阻为 Rg, tot= 8.5 Ω,栅极电压为 Vgs= −3 V/18 V,温度为 25 °C。根据图 5 中的结果,与竞争产品 A 相比,安森美新一代 NVBG023N065M3S 的反向恢复时间更短、反向恢复电荷更少且反向恢复能量也更低,因此具有更优异的反向恢复性能。  c. 参数和品质因数比较  下表总结了各器件主要属性的比较情况。各数值的每个属性已根据 M3S 器件值进行归一化。  根据上图,可以得出关于 NVBG023N065M3S 的以下结论:  与竞争产品器件相比,开关损耗降低 35%。  175°C 时,特定导通电阻比竞争产品器件低 28%。  与竞争产品器件相比,反向恢复电荷低 26%。  这证明 M3S 是适用于硬开关应用的出色技术。  拓扑与仿真  a. 基准拓扑  安森美的 M3S SiC MOSFET 专为高频开关应用而设计,是车载充电器应用和 HV DC/DC 转换器的理想选择。相关器件经过专门定制,具有超低开关损耗,同时保持非常低的导通损耗,因此成为了图腾柱功率因数校正 (PFC) 转换器等硬开关应用的理想选择。此外,由于导通电阻 RDS(on)较低、开关损耗非常小,M3S 器件也是LLC 转换器、CLLC 转换器和相移全桥等软开关应用的优选。  图腾柱 PFC 转换器是一种简单且高效的拓扑,广泛应用于需要高密度设计的领域。需要更高的功率和更高的能效时,可采用三相交错式图腾柱 PFC 转换器(如下图)。  b. PFC 转换器的功率损耗比较示例  在前面几小节中,我们通过测量值评估了导通和开关损耗,然后使用 PSIM 仿真程序对比了损耗情况。选择三相图腾柱 PFC 转换器作为拓扑,并采用以下测试条件(如图6所示)。  Vin= 230 Vrms  Vout= 400 V  Rg, tot= 6.1 Ω  Vgs= −5/18 V  Fsw= 100 kHz  Pout= 11 kW  下表展示了每种器件满负荷(11 kW)时的功率损耗。可以观察到,NVBG023N065M3S 器件受益于较低的导通损耗以及较低的开关损耗,最终实现了更高的系统能效。  结论  安森美M3S 650V SiC MOSFET 技术在电力电子领域取得了重大进展,尤其适用于电动汽车 (EV) 和其他节能系统中的高速开关应用。从 M1 到 M3 的演进将特定导通电阻 (RSP) 降低 50% 以上,并引入了四引脚 TO-247-4 等封装创新,逐步提高了开关性能,这彰显了安森美致力于优化 MOSFET 设计的承诺。M3S 产品组合以低 RDS(on)和出色的开关性能而闻名,在车载充电器和 DC-DC 转换器等成本敏感型市场中占据领先技术地位。  特性分析结果表明,M3S 与安森美前几代产品的性能优于竞争产品,开关损耗降低 31-42%,总开关损耗降低 35%。M3S的输出和反向电容较低,有助于加快开关速度,也因此成为了图腾柱 PFC 转换器等硬开关拓扑和 LLC 转换器等软开关拓扑的理想选择。此外,M3S SiC MOSFET 表现出优异的反向恢复性能,与竞争产品相比,恢复电荷和能量显著降低,进一步提高了系统能效。  随着电动汽车系统对功率密度、能效和热性能的要求不断提高,M3S 技术解决了行业面临的关键挑战。搭配全面的产品组合,安森美M3S MOSFET 为高能效电源转换提供了多功能的可靠解决方案。
关键词:
发布时间:2025-03-18 15:30 阅读量:247 继续阅读>>
荣湃推出车规级3300V数字高压隔离<span style='color:red'>开关</span>
  近年来,新能源行业蓬勃发展。以新能源汽车为例,据统计,2022年全球新能源汽车累计销量突破1000万辆,同比增长55%。而在随后的2023年,这一数字更是攀升至1370万辆,与2022年相比,依然保持着35%的强劲增长势头。  在此背景下,各大汽车制造商纷纷入场,加快推动超快充时代的到来。其中,作为新能源汽车核心部件的电池包,成为了关键突破点。目前市场上大多数电动汽车主要采用400V电压运行,800V电压的车型尚属少数,但随着汽车用户对续航里程需求的日益增长,纯电动汽车正逐步向800V电池架构转变。未来,随着技术的不断进步和应用场景的拓宽,新能源汽车甚至有望探索1200V乃至更高标准的高压架构平台。  另外一个引人注目的应用领域即为工业储能。近年来,由于地区冲突导致的能源短缺问题,以及国内电网改革的深入推进,工业储能领域获得了飞速的发展。与新能源汽车动力电池的迅猛发展类似,储能电池的电压也在持续攀升。目前市场上主流的储能电池电压已达到1500V,但随着需求的日益增长,未来我们甚至有望见到2000V或更高电压的储能电池问世。  不断提升的电池电压,对系统设计提出了更大的挑战。最主要的是BMS系统,其绝缘检测,高压测量等功能不容有失。在这些功能实现中,高压隔离开关产品起着重要作用,其通过控制开关的通断来采样电压。通常会串联电阻,以限制漏电流。若此电阻太小,则漏电流大,影响电池续航。若此电阻太大,则可能影响检测精度。如果直接把高压隔离开关产品的耐压提升,则串联的电阻本身几乎不会承担多少电压,也不存在漏电流风险,并且也不用因为考虑电阻的耐压和功耗而特意把电阻分成多串的形式,一定程度上减轻了成本压力和PCB布局压力。  目前,市场上的此类应用主要依赖于光耦继电器。根据客户端的不同需求,市场上已经衍生出多种耐压产品,涵盖了从100V到1500V的广泛范围,甚至3300V的产品也已经投放市场。光耦继电器是一种利用光作为媒介传递能量的器件,相较于传统继电器,它避免了机械触点和电磁干扰的问题。然而,随着电子行业的不断进步,光耦继电器的一些固有缺点和不足也逐渐凸显出来。特别是在环境条件、温度变化和长时间工作的影响下,光耦的光衰问题变得难以避免,这会对副边开关的性能产生直接影响。同时,CTR(电流传输比)也对温度和环境因素较为敏感,长期运行同样会导致其性能发生显著变化。  光耦隔离电路图  基于上述考量,荣湃半导体在成功推出业界首款基于数字隔离技术的1500V隔离开关产品Pai8558EQ-W2R之后,再度取得突破,推出了一款创新的3300V耐压数字隔离开关产品—Pai855AEQ-W2R。这款产品采用先进的数字隔离技术,以模拟二极管作为原边输入,彻底摒弃了传统光源作为能量转换载体的方式,因此从根本上避免了光衰问题。作为一款全半导体器件,它不仅拥有卓越的耐久性,寿命得到有力保障,同时也在高温环境下展现出优越的性能。  更为值得一提的是,Pai855AEQ-W2R内置了耐压高达3300V的SiC MOSFET,极大地简化了限流电阻的设计。具体参数如下:  •紧凑的固态双向SiC MOSFET  •低输出漏电流, IO ≤ 5μA@VDS = 3300V  •低导通电阻, RON(Typ) = 65Ω@IO = 2mA  •低开启时间: TON(Typ) = 20μs  •低关闭时间: TOFF(Typ) = 160μs  •原边反向击穿电压能力达7V以上  •> 8mm的爬电距离和电气间隙,WB SOIC-12封装  •温度范围: -40°C to +125°C  •AEC-Q100 认证  应用领域  •电池/太阳能电池板绝缘电阻测量/漏电流检测  •高压监测  •继电器替代  •浪涌电流限制  功能框图  此款新产品的推出,不仅体现了荣湃半导体在隔离产品领域的深厚技术积累,也预示着未来工业储能和新能源汽车动力电池等领域将迎来更加广阔的发展前景。
关键词:
发布时间:2025-03-13 11:24 阅读量:204 继续阅读>>
Littelfuse:面向运输和作业车辆的<span style='color:red'>开关</span>解决方案
Littelfuse:配有紧凑型3.5毫米致动器的KSC2 DCT轻触<span style='color:red'>开关</span>
  Littelfuse宣布推出C&K Switches KSC2 KSC双电路技术 (DCT) 系列轻触开关。这是C&K创新轻触开关系列的最新产品,致动器高度为3.5毫米,低于致动器高度为5.2毫米的KSC4 DCT。结合单刀双掷 (SPDT) 功能和电气高度规格,KSC2 DCT以紧凑、节省空间的设计提供了无与伦比的功能。  KSC2 DCT为设计人员提供了更大的灵活性,使他们能够设计出纤细、精确和可靠的产品。该致动器行程更短,响应时间更快,这对于需要高速和精确输入的应用来说至关重要。KSC2 DCT具有坚固耐用的IP67级密封和SPDT功能,是要求紧凑、可靠和功能先进的苛刻环境的理想之选。  全新3.5毫米致动器高度使KSC2 DCT脱颖而出,集节省空间设计、更快响应时间和更高集成度于一身。其紧凑的外形非常适合薄型和紧凑型设备,因为每毫米都很重要,而较短的移动距离可实现更快的信号传递,从而提高设备性能。此外,高度的降低使开关可以无缝安装在更狭窄的空间内,为工程师提供更大的设计灵活性。  Littelfuse电子业务部数字与技术开发副总裁Jeremy Hebras表示:“通过提供更低的致动器高度,我们使设计人员能够在更小的外形尺寸内实现更高的精度和更快的响应速度。这一新增产品反映了我们在满足当今应用对节省空间的要求的同时,致力于提高功能的承诺。”  KSC2 DCT采用双电路技术 (DCT) ,即单刀双掷 (SPDT) 配置,可在单个开关内产生两个独立的输出信号。这一特性提高了可靠性和多功能性,从而实现以下功能:  主动故障检测:使系统能够在执行前验证逻辑,从而提高安全性(例如,防止意外开门);  复杂控制方案:可灵活定义基于逻辑的动作,实现高级设备功能;  简化电路设计:减少开关和布线数量,简化开发流程并降低成本。  KSC2 DCT和KSC4 DCT轻触开关现在包括电气高度规格,可确保相对于PCB的精确开关位置。这一改进减少了累积公差误差,简化了设计集成。该规范通过提供±0.15毫米或±0.2毫米的标准化精度消除了可变性,为各种应用提供了一致、可靠的功能。此外,该产品还简化了设计流程,加快了集成速度,缩短了工程师的开发时间。  应用和市场  KSC2 DCT专为各种应用而设计,包括:  高端消费:电动工具、割草机、吹雪机;  医疗:电动手术器械;  工业:电梯、烟雾/火灾报警系统、自动化设备;  交通:汽车门把手、电动汽车充电站。  为什么选择KSC2 DCT?  KSC2 DCT的占位面积为6.2×6.2毫米,致动器高度3.5毫米,具有SPDT功能,为设计人员提供了可靠的多功能解决方案,以应对现代设备的挑战。KSC2 DCT将多种电气功能集成到一个节省空间的开关中,为轻触开关的性能树立了新的标准。  Jeremy Hebras表示:“我们在KSC4 DCT轻触开关系列中首次向全球推出DCT电路后,又在表现突出的微机械专业知识的加持下,将这一产品扩展到更小的外形尺寸,加上电气高度功能,我们推荐给我们的客户,使客户在设计更为狭小空间的产品时,也能受益于这一独特解决方案,使客户能够在一个小巧、单一的SMT封装中丰富自己的器件,实现更多电气功能。”
关键词:
发布时间:2025-03-04 14:39 阅读量:325 继续阅读>>
维安模拟<span style='color:red'>开关</span>助力信号链路高效传输与切换
  模拟开关的主要功能是完成信号链路中的信号切换,其采用 MOS 管开关方式实现对信号链路关断或打开,从而实现信号开关、隔离、选择、调理、传输等功能。  模拟开关广泛应用于手机及移动设备,网络通信及服务器,工业控制,汽车电子,等各个行业。         维安针对模拟开关广泛的客户群和应用,开发了通用模拟开关、高速USB模拟开关、音频模拟开关等信号链产品,持续给客户提供整体解决方案。  理想状态下,模拟开关应具备两大特性:导通时,电阻为零,使得信号能毫无阻碍地传输,输出与输入完全一致;断开时,电阻趋近于无穷大,保证两个信号完全隔离,互不干扰。在这种理想状况下,开关的输入和输出端可依据实际驱动需求灵活互换。  然而,实际的模拟开关由于存在大量寄生效应,会对系统性能产生影响。导通状态下,输入与输出间不可避免地存在一定电阻和电容。这些因素综合作用,会导致输入信号出现不同程度的衰减与失真。而在关断状态时,输入和输出之间同样存在一定的残余电阻和电容,这就使得输出与输入之间仍存在微弱耦合,无法实现彻底的隔离 。  针对模拟开关在应用中的要求,维安高性能模拟开关具有以下特点:  低功耗  支持过压保护  较低的导通电阻  高带宽  较高的关断隔离度  串扰抑制可降低信号失真  增强ESD保护  工作范围:-40℃ to 85℃  模拟开关的主要性能参数有电压范围、导通电阻、串扰、隔离度、带宽以及眼图等。  1.电压范围  包括供电电压范围以及模拟电压范围。  2.导通电阻  开关路径接通后插入信号路径的电阻。  3.带宽  可通过开关且衰减不超过 3dB 的信号频率范围。  4.隔离度 & 串扰度  关断隔离 (OISO):测量关断状态开关阻抗;  通道间串扰 (XTALK) :对从导通通道到关断通道之间不必要的信号耦合的一种量度。  5.眼图  一系列数字信号在示波器累积而显示的图形,可以观察出码间串扰和噪声的影响。
关键词:
发布时间:2025-03-04 14:02 阅读量:268 继续阅读>>
<span style='color:red'>开关</span>电源基础知识分享-一文搞懂什么是<span style='color:red'>开关</span>电源
  在现代电子设备中,开关电源已经成为主流的电源供应方式。相比传统的线性电源,开关电源更高效、更稳定,且能够适应不同输入电压范围。本文将深入探讨开关电源的基础知识,解释其工作原理、优势以及应用领域。  1. 开关电源的工作原理  开关电源是一种利用开关元件(如晶体管)进行快速切换的电源系统。其工作原理涉及将输入直流电压转换成高频交流电压,通过变压器和整流器输出所需电压。  主要组成部分  输入滤波器:用于减小输入电源中的噪声和干扰。  整流器:将输入电压转换为脉冲宽度调制(PWM)信号。  开关元件:负责控制电源开关状态,通常使用 MOSFET。  变压器:用于变换电压,提高或降低电压。  输出整流器和滤波器:将变换后的电压输出到负载。  2. 开关电源的优缺点  优点  1. 高效率:开关电源通常能够实现较高的转换效率,大多数设计可以达到90%以上的效率。相比线性电源,开关电源能更有效地转换输入电能为输出电能,节省能源并减少热量损耗。  2. 轻巧紧凑:由于开关电源内部使用高频开关进行电压转换,因此可以设计成体积小巧、重量轻的形式。这使得开关电源非常适合需要体积小型化的应用场景,如移动设备和便携式电子产品。  3. 稳定输出:开关电源能够提供稳定的输出电压和电流,即使在负载变化或输入电压波动的情况下也能保持输出稳定性。这使得开关电源在各种工作条件下都能提供可靠的电源供应。  4. 适应性强:开关电源能够适应不同的输入电压范围,通常支持广泛的输入电压(AC或DC)范围。这使得开关电源在国际通用和应对不同电网标准时具有很高的适用性。  5. 可靠性高:开关电源通常寿命长,工作稳定可靠。其设计和构造使得其在长时间运行和各种环境条件下能够保持高效、稳定的工作状态。  缺点  1. 电磁干扰:开关电源可能会产生电磁干扰,会影响其他设备的正常工作,特别是对于无线通信设备和灵敏的电子设备来说,这可能会成为一个问题。  2. 成本较高:相比传统的线性电源,开关电源的设计和制造成本通常较高。尤其是高功率的开关电源系统,在设计和组件选购方面需花费更多成本。  3. 复杂性:开关电源的设计和调试相对复杂,需要更深入的电路和控制知识。对于普通用户或不熟悉电子技术的人来说,维护和修理开关电源可能会有一定难度。  4. 电磁干扰:一些开关电源可能会产生高频噪音或振荡,这可能会对某些敏感设备或应用造成干扰。  5. 散热问题:一些高功率的开关电源系统可能会产生较多的热量,需要额外的散热设计来确保稳定运行。  3.开关电源的应用领域  开关电源作为一种高效、稳定的电源供应方式,在各个领域广泛应用,满足了不同领域对电源系统高效、可靠性和灵活性的需求。以下是开关电源主要的应用领域:  1. 工业自动化  工业控制系统中常用开关电源提供稳定的电源供应,并能适应复杂的工作环境。  用于驱动各种工业设备,如PLC(可编程逻辑控制器)、传感器、伺服马达等。  2. 通信和网络设备  在通信基站、网络设备和数据中心中广泛使用,提供稳定的电源以确保通信和数据传输的可靠性。  用于光纤通信设备、路由器、交换机、服务器等。  3. 医疗设备  用于医用电子设备,如医用成像设备、手术设备、监护仪器等。  提供清洁、稳定的电源,保证医疗设备的正常运行。  4. 汽车电子  在汽车电子系统中使用,如车载娱乐系统、导航系统、发动机控制单元等。  提供稳定的电源以支持各种车辆内部设备和功能。  5. 太阳能和风能转换  用于太阳能和风能发电系统中,将不稳定的太阳能或风能转换为稳定的电源输出。  提供高效能源管理和功率转换。  6. 消费类电子产品  在消费类电子产品中广泛应用,如手机充电器、笔记本电脑适配器、LED照明等。  提供小型、高效的电源解决方案。  7. 航空航天  在航空航天领域中使用,提供飞机、卫星等设备所需的高效、稳定的电源。  对轻量化、高效率和可靠性有严格要求。  4.开关电源的常见故障及维修技巧  1. 常见故障原因  1.1 电源无输出  可能原因:  输入电源故障。  输出端有短路。  控制芯片损坏。  解决方法:  检查输入电源是否正常。  排除输出端的短路情况。  更换损坏的控制芯片。  1.2 电源过载  可能原因:  过负载引起。  过放电保护功能触发。  解决方法:  检查负载是否超过额定值。  检查过放电保护电路,并适当降低负载。  1.3 电源噪音大  可能原因:  开关管损坏。  输出电容故障。  解决方法:  更换损坏的开关管。  更换故障的输出电容。  2. 维修技巧  2.1 安全第一:维修任何电子设备时务必确保安全。在处理开关电源时,首先断开电源并等待一段时间,以确保电容器中的电荷已经释放。  2.2 仔细检查:对于出现故障的开关电源,需要仔细检查各个部件和连接线路。检查元件是否有明显的烧损、漏液或变形情况,并用万用表测量元件的参数。  2.3 焊接技巧:在替换元件或修复焊接点时,需要使用正确的焊接工具和技术。确保焊接点牢固、无冷焊现象,并避免短路或打火。  2.4 替换元件:根据故障的具体原因,适时更换损坏的元件,如开关管、电容、电阻等。选择合适规格和品质的元件进行替换,确保与原件相匹配。  2.5 保养和清洁:定期对开关电源进行清洁和维护,确保通风良好、无灰尘堆积。定期检查电路板上的连线和焊接点是否松动,及时加固。
关键词:
发布时间:2025-02-12 13:40 阅读量:512 继续阅读>>
思瑞浦发布车规级高边电源<span style='color:red'>开关</span>TPS42S40Q
  聚焦高性能模拟与数模混合产品的供应商思瑞浦3PEAK(股票代码:688536)推出汽车级高边电源开关TPS42S40Q。产品集成有MOS功率FET和电荷泵,专用于对各类阻性、感性和容性负载进行智能控制。可广泛应用于汽车域控、ADAS、动力系统、环视相机、变速器、空调、座舱等领域。  TPS42S40Q产品优势  高精度电流检测  TPS42S40Q提供出色的电流检测精度。对于1A及以上负载,检测精度为3%,如图1所示;而对于50mA及以上负载,检测精度为7%,如图2所示。精准的电流感应能力可轻松识别负载状态和测量负载电流。  精准电流限制  TPS42S40Q在Vs=13.5V的运行条件下,能够提供非常精准的电流限制功能。当电流限制阈值设定在0.5A时,全温范围内限制精度可达±20%;电流限制阈值设定在1.6A时,全温范围内限制精度则为±14%,如图3所示。  低导通电阻  TPS42S40Q的导通电阻标称阻值为100mΩ,与供电电压呈负相关,与温度呈正相关。这意味着在相同运行条件下,温度越低、供电电压越高,导通电阻也就越低,如图4所示。  动态响应出色  TPS42S40Q在VS=13.5V,IOUT=4A,CS=300ohm,IN OFF的运行条件下,具有出色的动态响应性能。输入关断后,对关断过程进行斜率匹配,将斜率控制在±0.15V/μs,输出电压和电流在80μs达到稳态,完成关断。如图5所示。  TPS42S40Q在VS=13.5V,IOUT=4A,CS=300ohm,IN start-up的运行条件下,输入启动后,对启动过程进行斜率匹配,将斜率控制在±0.15V/μs,输出电压和电流在110μs达到稳态,实现稳定输出。如图6所示。  TPS42S40Q在VS=13.5V时,当负载跳变,IOUT在1A到4A之间跳变,输出电压波动范围在1V以内,且快速达到稳态,如图7所示。  TPS42S40Q产品特性  宽工作电压范围:4V~40V  超低待机电流:低于0.5µA  宽工作温度范围:-40°C至150°C  版本 A:开漏状态输出  版本 B:电流感应模拟输出  输入控制:兼容3.3V和5V逻辑  高精度电流感应:电流为1A时精度为±3%  可编程电流限制:利用外部电阻器实现,500mA时精度为±20%  全面故障诊断:开路和短路诊断、过流和接地诊断、过温诊断  多重保护功能:过载和短路保护、电感负载负电压钳位、欠压锁定 (UVLO) 保护、接地失效保护和失电保护、过温保护、输出短接到电池保护  TPS42S40Q典型应用  TPS42S40Q可驱动各类阻性、感性和容性负载并进行智能控制。精确的电流检测和可编程电流限制特性,使得TPS42S40Q应用领域广泛。 
关键词:
发布时间:2024-12-26 17:11 阅读量:457 继续阅读>>
稳先微重磅发布汽车驱动芯片智能高边<span style='color:red'>开关</span>WS7系列
  近几年,新能源汽车高速发展,用车浪潮蔓延全球,我国新能源汽车占有量连续9年居全球前列,2023年全年市占率达37.7%,市场规模可观,并显现出以下特点:电车产品对比油车优势明显、消费者接受度高、市场规模庞大、发展潜力可观。伴随着电动化与自动驾驶技术的发展,汽车半导体行业也进而掀起一场革新,半导体对汽车的重要性与日递增,车身功能的叠加也促使业内将目光转向研发高集成度的芯片产品,出于新能源汽车渗透率的提高、维护成本的减少和市场需求的高度匹配,高边开关(高边驱动)成为电动汽车智能化、电控化的产品应用方向。  在市场需求的基础上,深圳市稳先微电子有限公司(下称“稳先微”)重磅发布汽车驱动芯片新品——智能高边开关WS7系列,共计9款产品:单通道高边开关芯片WS型、双通道高边开关芯片WSD型和四通道高边开关芯片WSQ型,此次推出的产品具有优秀的过温、过流、欠压保护等性能,满足在汽车使用过程中对更高的安全性与稳定性的需求。  高边开关WS7系列解决传统弱项,实现升级替代  稳先微高边开关新品解决了传统保险丝和继电器带来的灵活性不足、功耗高以及容易造成EMC干扰等问题,在复杂的汽车电子系统中不仅能实现对负载的驱动与关闭,也能达成对负载的多功能、更高程度的保护与诊断,在电热丝加热、电力传输和功率传输这三大方面具备明显优势。  高边开关WS7系列产品摒弃了汽车模块与蓄电池间单线制的传统连接,大大节约了两者之间的汽车线束,减少无效空间的占用,从而减轻车身重量,降低故障发生率。涉及到行车安全这一方面,高边开关能协助汽车的中央控制器实时掌控各个模块的运行状况,避免每一个模块受到电气环境干扰的风险,产品也在模块与模块之间共享保护和滤波模块,提供稳定、安全的能源,为各线路之间的信号传达“保驾护航”,因此,高度的安全性和可靠性是产品的核心优势,帮助新能源汽车向轻量化、高智能、高安全的发展方向升级。  而随着新能源汽车三大发展方向的升级,应用到汽车的高边驱动产品数量在不断递增,对产品的集成度、可靠性、性能表现日益严苛。稳先微发布的单通道、双通道、四通道产品能够满足车企的研发需求,同时将不断进行产品迭代和功能创新,和广大车企商业伙伴共同进步,共创具有开拓性意义的新智能汽车时代。  稳先微智能高边开关WS7系列的产品介绍  稳先微的智能高边开关WS7系列通过不同通道数对汽车进行控制、诊断与保护,驱动12V汽车的接地负载应用,并发挥先进的保护、诊断功能,包括可配置闭锁功能的过热关断保护、动态过温保护、负载过流保护、高精度比例负载电流检测、输出过载和对地短路警报以及对VCC短路诊断和OFF状态开路诊断等。整个智能高边开关系列产品可用于驱动车身控制域中的各种阻性、感性及容性负载的驱动,涵盖了车内饰灯、头尾灯、座椅和方向盘及后视镜加热、电磁阀、门锁、电机等多种应用场景。  选型与关键参数  单通道高边开关芯片WS型:  双通道高边开关芯片WSD型:  四通道高边开关芯片WSQ型:  稳先微发挥产业链上下游整合优势,掌握先进的垂直BCD工艺平台、平面BCD工艺平台、UHV工艺平台和SGT功率器件平台,具备丰富的数模混合设计能力和先进的封装设计能力,推出高功率、高性能、高稳定性的能量链保护芯片解决方案,产品覆盖汽车电子、工业电源、高端消费电子领域。于2021年成立无锡汽车电子创新中心,组建高水平的汽车芯片研发团队,服务于16家头部Tier1和19家知名车企,获得客户的一致好评。
关键词:
发布时间:2024-12-19 10:57 阅读量:576 继续阅读>>

跳转至

/ 15

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
型号 品牌 抢购
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码