开关电源和<span style='color:red'>变压器</span>的区别是什么?
  开关电源和变压器的区别  开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源可分为AC/DC和DC/DC两大类;按输入与输出之间是否有电气隔离可以分为两类:一类是有隔离的称为隔离式DC/DC转换器;另一类是没有隔离的称为非隔离式DC/DC转换器。开关电源具有过流、过热、短路等保护功能,电压输入范围宽,输入输出间隔离电压,隔离式的输入输出间隔离电压高。  变压器就是一种利用电磁感应的原理来变换电压,电流和阻抗的器件。变压器的主要应用于交变电路回路。  什么是开关电源  开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。  开关电源的优缺点  优点:  1、效率较高,体积小。由于开关电源的电压控制是利用功率半导体器件的饱和区通过调整它的开通时间或频率达到的,所以就不存在铁损和铜损,元器件的损耗可以忽略不计,比较变压器而言效率较高;由于它只有元器件和电路板,因而体积就会很小,重量也较轻。  2、电压输入范围宽。一般可达到160V-270之间。  缺点:  1、开关电源看着小巧,功率和磁心变压器以及控制方式有关,电磁干扰大,纹波系数大。尤其有音频、视频的范畴内,对电磁干扰非常敏感,在音频表现为音色不纯厚,可能会有丝丝声;在视频表现为,图像可能会有细小的纹波,不细腻。  2、设计复杂,维护维修不方便。往往越是复杂的设备出现的问题的可能性就越大,而且开关电源一旦出现问题,一般非专业人士是维修不了的,找别人维修,费用又太高,还不如废弃掉。  3、体积小是开关电源的优点,但设计不好就成为它的缺点了。为了追求更小,一大把元器件挤在一个小壳子里,散热不好,还会出现外壳变形的现象。  4、开关电源的元器件在选择上也不是很规范。国家有关质检部门检验市场上的开关电源发现,有过半数的不合格,这其中还包括进口开关电源。  5、最大的一点就是抗雷击能力非常低。在监控系统中,遭遇雷击的可能也非常大,主要表现为从电源串入,直接雷击的可能性非常小。一旦220V的电压突然变高,开关电源在瞬间就被烧毁。前段时间的一个监控系统中,在一个雷过后,监控总闸跳了,再合上闸后,大部分摄像机还正常工作,一部分监视器显示无视频信号。经检查发现,无视频信号的全部都是开关电源(施工时有的地方安装不方便,就用了开关电源),最后又在摄像机杆上安装上了电源箱,换上了变压器电源。  什么是变压器  变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。按用途可以分为:电力变压器和特殊变压器(电炉变、整流变、工频试验变压器、调压器、矿用变压器、音频变压器、中频变压器、高频变压器、冲击变压器、仪用变压器、电子变压器、电抗器、互感器等)。电路符号常用T当作编号的开头。例:T01, T201等。  变压器的优缺点  优点:  1、线性的看着笨重,功率完全取决于变压器和调整管,效率虽低但是不会引入额外的干扰,也就是说电磁干扰小,纹波系数很低,可忽略不计。对于监控来说,没有比这个优点还要好的了,图像质量的好坏与电源的关系非常大。尤其对于小幅值的模拟信号(音频源和视频源等)对电源的要求非常高,所以一些发烧音响中的电源都采用变压器而不用开关电源。  2、稳压率高、设计简单,维修维护非常方便,出现故障,稍懂电子的技术人员就能维修,维修成本比开关电源少得多。  3、抗雷击性能好。由于变压器的结构是两个线圈和铁芯,加在线圈两端的电压不能突变,故对瞬间的高压有很强的抑制性。所以在一次雷击事故中,变压器的电源存活了下来,而开关电源无一例外的烧毁了。  缺点:  1、效率低。由于变压器是一个“电——磁——电”的转换过程,避免不了存在铁损和铜损,效率低。  2、输入范围窄。一般只有200V—240V之间吧,小于这个范围,输出电压不够,大于这个范围,变压器可能就会烧毁。这个电压范围绝大多数的场合是够用的,不必去过多的考虑。再者变压器体积较开关电源大,笨重。
关键词:
发布时间:2025-04-18 17:16 阅读量:331 继续阅读>>
开关<span style='color:red'>变压器</span>的原理及优劣检测方法介绍
  开关变压器作为一种常见的电源变换器,具有体积小、效率高、适应性强等优点,在各种电子设备中得到广泛应用。本文将深入探讨开关变压器的工作原理,并介绍相关的优劣检测方法。  1. 开关变压器的工作原理  开关变压器是一种通过开关管实现能量传递和变换的电源变换器。其工作原理主要包括以下几个步骤:  a. 输入端整流:  交流输入信号首先经过整流桥路进行整流,转换为直流电压。  b. 高频开关调制:  通过开关管控制开关频率和占空比,将输入的直流电压转换为高频脉冲信号。  c. 变压器传输:  高频脉冲信号在变压器中传输,实现电压的变换和隔离。  d. 输出端整流:  变压器输出的高频交流电压再经过整流滤波,转换为稳定的直流电压供给负载。  2. 开关变压器的优劣检测方法  对于开关变压器的优劣检测,可以采取以下方法进行评估:  a. 效率测试:  通过测量输入功率和输出功率来计算变压器的效率,高效率通常代表设计合理、损耗低。  b. 转换效率:  评估变压器在不同负载下的转换效率,了解其在各种工作条件下的性能。  c. 温度测试:  监测变压器工作时的温度变化情况,高温可能表示散热不良或负载过重。  d. 输出波形分析:  检查输出波形是否稳定,波动大可能表示开关管工作不稳定或负载问题。  e. 绝缘测试:  进行绝缘电阻测试,确保变压器绝缘良好,避免安全隐患。
关键词:
发布时间:2025-04-15 14:55 阅读量:303 继续阅读>>
TDK针对500 V系统推出更紧凑的栅极驱动<span style='color:red'>变压器</span>
  TDK株式会社(东京证券交易所代码:6762)新近推出爱普科斯 (EPCOS) EP9系列变压器(订购代码:B82804E)。相比于专为IGBT及FET栅极驱动电路而设计现有E10EM系列表面贴装变压器,新系列元件尺寸更为紧凑,且优异性能可满足500 V系统电压的严苛汽车及工业应用要求,同时具备绝缘性能好、耦合电容超低和耐热性强的特点。该新系列产品迎合了TDK积极推动绿色转型,迈向更加电气化和可持续未来的理念。  EP9系列采用锰锌MnZn铁氧体磁芯及SMD L型引脚设计,高度仅为11 mm,占板面积为13 x 11 mm,具有−40 °C至+150 °C的宽工作温度范围,即使在严苛工况下也能确保高可靠性。其耦合电容仅为2 pF,符合AEC-Q200 Rev. E标准,且爬电距离与空间距离≥5 mm,广泛适用于汽车电子及其它要求较高的应用场合。  新系列变压器支持半桥及推挽式变换器等拓扑结构,典型工作频率为100至400 kHz,且匝比专门针对具体应用进行了优化。产品采用卷带包装,方便大批量生产环境中的自动化装配。  主要应用  变频系统用的IGBT/MOSFET栅极驱动变压器  DC-DC转换器用的辅助变压器  主要特点和优势  尺寸紧凑:13 x 11 x 11 mm(长x宽x高)  宽工作温度范围:−40 °C至+150 °C  超低耦合电容:2 pF  绝缘性好:爬电距离与空间距离≥5 mm [累积,磁芯悬浮]  获得AEC-Q200 Rev. E认证
关键词:
发布时间:2025-03-13 11:18 阅读量:360 继续阅读>>
纳芯微推出集成晶振的NSIP3266全桥<span style='color:red'>变压器</span>驱动
  纳芯微今日宣布推出集成晶振与多种保护、支持软启动的全桥变压器驱动NSIP3266,可广泛应用于汽车车载充电机(OBC)、牵引逆变器及充电桩、光伏发电和储能、服务器电源等系统中的隔离驱动供电电路。  NSIP3266支持宽范围输入的全桥拓扑,同时凭借巧妙的引脚和功能设计,极大简化了隔离驱动供电电路设计,为系统制造商优化系统电路,缩短产品上市时间提供便利。  当前高压系统中的隔离驱动供电有集中式、全分布式、半分布式三种架构形式。集中式架构只有一级电源,辅助电源输入电压为宽输入范围,需要闭环工作;同时变压器设计复杂,尤其是采用单个低成本隔离电源时,有多路输出负载调整率和长走线的问题,加大了系统设计和调试难度。  全分布式架构采用独立的隔离电源模块为隔离驱动供电的方式,优势是可以做到对隔离驱动1对1的供电和针对性保护,但是需配置对应数量的隔离电源模块,系统成本较高。  半分布式架构采用均衡的策略,通过两级辅助电源架构,第一级使用宽输入电压范围的器件生成稳压轨,第二级可以简洁的开环形式,使用其他器件为隔离驱动提供隔离电源供电。半分布式架构因在设计相对简洁的基础上,兼顾了系统成本、性能和保护需求,因此正受到越来越多工程师的青睐。  全桥拓扑精简电路设计  纳芯微全桥变压器驱动NSIP3266专为隔离驱动供电的半分布式架构而设计,半分布式架构的常见拓扑选择包括推挽,LLC和全桥等。  NSIP3266采用全桥拓扑,相较其他方案,全桥拓扑原理简单,变压器结构无需中心抽头,工作原理不涉及外部L和C的设计选型,外围BOM往往最少。与此同时,全桥拓扑对变压器设计,包括漏感和寄生的包容度也较高,可节省工程师系统设计和调试的精力。  巧妙设计释放MCU资源  值得一提的是,NSIP3266通过内部集成的晶振电路和RT引脚设计,使得工程师仅需外接电阻即可完成开关频率配置,实现了对MCU控制的解耦,布局更加灵活,同时在MCU故障时依然能够安全供电,促进了更高的系统安全。  除此之外,NSIP3266自带的软启动功能也省去了MCU的控制需求,在无需配合MCU域走线的同时,节省了副边限流电阻,大大简化了布板设计,提升了架构灵活度。  支持宽压输入和全面的保护功能  NSIP3266支持6.5V~26V的宽工作电压,系统电路中不需要额外增加TVS保护管,允许工程师更加灵活地选择前级电源。  此外NSIP3266提供诸多保护功能,包括欠压保护、过流保护、过温保护等,全面的保护功能使得工程师能够聚焦于系统核心功能的优化与创新,快速高效地进行系统设计并满足可靠性要求。  封装和选型  NSIP3266提供EP-MSOP8封装(3.0 x 3.0mm x 0.65mm,带散热焊盘),工规版本NSIP3266-D和满足AEC-Q100要求的车规版本NSIP3266-Q1将于2025年上半年陆续量产。  丰富的隔离产品满足多元需求  凭借在隔离技术方面的积累和领先优势,纳芯微提供涵盖数字隔离器、隔离采样、隔离接口、隔离电源、隔离驱动等一系列隔离及“隔离+”产品。  NSIP3266是纳芯微隔离电源系列的全新成员,纳芯微亦提供其他高性价比与高性能高集成度的产品选择,包括推挽式变压器驱动NSIP605x系列;集成了变压器和多通道数字隔离器的NSIP88/89xx系列和NIRSP31x系列;以及集成了变压器和隔离接口的隔离式RS485收发器NSIP83086,和隔离式CAN收发器NSIP1042。  纳芯微全面的“隔离+”产品布局可满足各种类型客户多样化的系统设计需要,为不同客户提供一站式的芯片解决方案。
关键词:
发布时间:2025-01-07 15:15 阅读量:802 继续阅读>>
升压<span style='color:red'>变压器</span>与降压<span style='color:red'>变压器</span>有什么区别
  升压变压器(Step-Up Transformer)和降压变压器(Step-Down Transformer)是常见的装置,用于改变交流电的电压级别。  1. 升压变压器  特点:  功能:升压变压器用于将输入端的低电压信号转换为高电压信号。  匝数比:输出端线圈匝数多于输入端,导致输出电压大于输入电压。  应用:常用于输电网中将发电机产生的电能升压以减小电能传输损失。  结构:升压变压器通常具有较高的绝缘等级,以承受高电压。  工作原理:  输入端的交流电流通过变压器的初级线圈,感应到次级线圈。  根据变压器的变比关系,次级线圈的匝数多于初级线圈,从而提高输出端的电压。  2. 降压变压器  特点:  功能:降压变压器用于将输入端的高电压信号转换为低电压信号。  匝数比:输出端线圈匝数少于输入端,导致输出电压小于输入电压。  应用:通常用于调节家庭和工业设备的电压,确保安全和稳定运行。  结构:降压变压器可设计成较为紧凑和便携,适用于各种电子设备。  工作原理:  输入端的高电压信号经过变压器的初级线圈,感应到次级线圈。  由于次级线圈的匝数少于初级线圈,输出端的电压被降低至所需水平。  3. 区别与联系  区别:  功能:升压变压器提高电压,降压变压器降低电压。  匝数比:升压变压器次级线圈匝数多于初级,降压变压器次级线圈匝数少于初级。  应用场景:升压变压器用于输电网和高电压设备,降压变压器用于家居和工业设备。  电压方向:升压变压器输出电压高于输入,降压变压器输出电压低于输入。  联系:  两者都通过电磁感应原理实现电压变化。  升降压变压器都是重要的电力设备,用于各种电气系统中。  4. 应用领域  升压变压器应用:  输电网:将发电机输出的电能升压以减小电能传输损失。  实验室和研究:用于提供高电压以进行实验和测试。  降压变压器应用:  电子设备:调整电子设备的输入电压,确保设备正常运行。  家庭用电:降压变压器用于将输电网提供的高电压调整为适合家庭用电的低电压。  工业设备:工业领域中的各种设备需要不同的电压级别,降压变压器用于调节电压以满足设备需求。  升压变压器和降压变压器在电力系统和电子设备中起着至关重要的作用,通过改变输入端和输出端之间的匝数比例实现电压的升降。升压变压器用于提高电压以适应特定应用场景,而降压变压器则用于降低电压以确保设备正常运行并保证安全性。
关键词:
发布时间:2024-12-02 14:34 阅读量:606 继续阅读>>
主<span style='color:red'>变压器</span>有哪些保护?选择原则是什么
  主变压器是电力系统中重要的设备之一,用于升降电压以及传递能量。为了确保主变压器的安全运行和延长其寿命,必须配备相应的保护装置。主变压器的保护可以分为内部保护和外部保护两大类,各种保护措施旨在监测并防止可能对主变压器造成损坏的异常情况。  1.主变压器的保护方式包括但不限于以下几种:  过载保护:监测主变压器的负载情况,一旦超过额定容量,会触发保护动作。  短路保护:防止主变压器在发生短路时受到不可逆损坏,通常采用差动保护和整流效应保护。  接地保护:监测绕组是否接地或接地出现故障,当检测到绝缘击穿或接地时会切断电源。  过压/欠压保护:保护系统免受外部过压或欠压影响,避免对主变压器造成影响。  过温保护:监测主变压器温度,一旦超过安全范围,会自动切断电源。  2.主变压器保护装置的选择原则:  在选择主变压器保护装置时,需要考虑以下几个原则:  可靠性:保护装置必须具有高可靠性,能够准确快速地做出响应,有效保护主变压器。  灵敏性:保护装置应对主变压器异常情况做出灵敏判断,及时采取保护措施,以减小事故发生的可能性。  稳定性:保护装置在恶劣环境下仍能正常工作,不受外界干扰影响。  适用性:保护装置要根据主变压器的特点和工作条件进行选择,保证适用性和有效性。  可操作性:保护装置的设置与调试应简单方便,易于操作和维护。  经济性:在综合考虑性能和价格的前提下,选择成本合理的保护装置。  通过以上保护方式和选择原则的综述,我们可以更好地了解主变压器的保护措施及如何选择适合的保护装置,从而提高主变压器的运行效率和可靠性。
关键词:
发布时间:2024-11-19 13:56 阅读量:801 继续阅读>>
自耦<span style='color:red'>变压器</span>采用降压启动的工作原理是什么
  自耦变压器是一种特殊类型的变压器,通过自耦合绕组实现电气隔离和电压变换。在某些应用中,自耦变压器采用降压启动方法来实现对设备的启动和调节电压,以确保设备正常运行。  1. 自耦变压器概述  自耦变压器是一种具有单个共享绕组的变压器,与常规双绕组变压器不同,它的输入和输出绕组之间存在部分电气连接。通过这种共享部分绕组的方式,自耦变压器可以提供比传统变压器更高的效率和更紧凑的设计。  2. 降压启动的工作原理  2.1 初次通电过程  当设备首次接通电源时,采用降压启动的自耦变压器会通过其共享绕组向设备施加较低的电压,从而减少电力冲击和压力波,有助于缓解设备的启动冲击。  2.2 动态调节电压  在设备运行过程中,自耦变压器可以根据需要动态调节输出电压,使设备获得稳定的工作电压,同时实现能耗的有效管理。  2.3 节约能源成本  通过采用降压启动方法,自耦变压器可以减少设备启动时的能量消耗,节约能源成本,同时延长设备的使用寿命。  3. 降压启动的优势  3.1 降低起动电流  采用降压启动方法,自耦变压器可以降低设备启动时的起动电流,减少对电网的冲击,有利于平稳可靠地启动设备。  3.2 减少设备损坏风险  通过降低启动过程中的电压和电流,自耦变压器可以有效减少设备因启动冲击而导致的损坏风险,保护设备和延长设备寿命。  3.3 提高设备运行稳定性  采用降压启动方法,自耦变压器可以提供稳定的电压输出,使设备在启动和运行过程中保持稳定性,提高设备的运行效率。  4. 应用场景  4.1 电机启动:在电机启动过程中,自耦变压器的降压启动方法可以帮助减少起动电流,降低对电网的影响,保护电机和延长电机使用寿命。  4.2 照明系统:对于灯光等照明系统,采用自耦变压器的降压启动可以避免瞬间大电流对灯具的损坏,同时降低电网负荷,提高系统稳定性。  4.3 工业设备:在工业设备的启动和运行过程中,采用降压启动的自耦变压器可以有效控制电压波动,保护设备免受电力冲击,提高设备的可靠性和稳定性。  4.4 变频器应用:对于需要使用变频器控制的设备,自耦变压器的降压启动方法可以协助变频器平稳启动,减少起动时的电流冲击,确保设备正常运行。  自耦变压器采用降压启动的工作原理为各种设备的启动和运行提供了一种有效的解决方案。通过降低启动时的电压和电流,自耦变压器可以减少设备的损坏风险、节约能源成本,并提高设备的稳定性和可靠性。在实际应用中,合理选择自耦变压器并采用降压启动方法,可以为设备的长期稳定运行提供有力支持。
关键词:
发布时间:2024-11-15 13:45 阅读量:510 继续阅读>>
一文看懂电抗器与<span style='color:red'>变压器</span>的区别
  在电力系统中,电抗器和变压器都是重要的电气设备,在电能传输和分配中扮演着关键角色。虽然它们都涉及到电磁感应和电气参数的转换,但电抗器和变压器在原理、作用和应用领域上有着明显的区别。  1.电抗器(Reactor)  工作原理:  电抗器是一种被动元件,主要用于改变电路中的电流波形,并产生感性或容性电抗。感性电抗器(电感)通过电磁感应来阻碍电流的变化速度,而容性电抗器(电容)则通过存储和释放电荷来影响电流的变化。电抗器起到限流、稳流和过滤等作用,可以降低谐波、提高功率因数和保护设备。  特点:  被动元件,不具有增益功能。  通常用于对电流进行限制和调节。  可以用于平衡电路、消除谐波以及提高电路的稳定性。  2.变压器(Transformer)  工作原理:  变压器是一种电气设备,用于将交流电能从一个电路传输到另一个电路,通过磁耦合实现电压和电流的变换。变压器主要由两个或多个线圈(绕组)共同构成,当输入端(初级绕组)施加电压时,将在输出端(次级绕组)产生相应的电压,并根据绕组匝数比例实现电压升降。  特点:  实现电压和电流的变换,不改变频率。  具有增益功能,能够实现电能传输和分配。  在电力系统中广泛用于调整电压、降低损耗和提高传输效率。  3.区别与联系  工作原理:  电抗器是一种被动元件,通过感性或容性电抗来影响电路中的电流波形。  变压器是一种主动设备,通过磁耦合实现电能的变换和传输。  功能作用:  电抗器主要用于调节电流、限制谐波以及提高功率因数。  变压器主要用于电压和电流的变换,实现电能的传输、分配和调整。  应用领域:  电抗器常用于电力系统中的稳定性控制、谐波抑制和电力负载平衡等方面。  变压器广泛应用于电力系统中的电压调节、电能传输和分配、电力负载管理等方面。  结构形式:  电抗器通常由线圈和磁芯组成,用于产生电感或电容。  变压器由主绕组和副绕组组成,通过磁耦合实现电压和电流的变换。  电气参数:  电抗器影响电路中的电流波形,功率因数和谐波特性。  变压器主要影响电路中的电压、电流大小和相位关系,以实现电能传输和分配的功能。  工作方式:  电抗器是被动元件,在电路中不放大信号,仅通过电磁感应或电容存储和释放电荷来调节电路特性。  变压器具有放大功能,可以将输入端的电压信号变换为输出端的相应电压信号,实现电能的有效传输和分配。  安装位置:  电抗器通常安装在电力系统中的电源侧或负载侧,用于降低谐波、稳定电流和提高功率因数。  变压器通常安装在电力系统中的供电点或变电站,用于管理电能传输、调整电压等级和匹配负载需求。  在电力系统中,电抗器和变压器扮演着不同但互补的角色。电抗器通过调节电路中的电流特性,帮助维持系统稳定运行和优化功率因数。而变压器则通过变换电压和电流,实现电能的传输、分配和调整,确保系统各部分之间的电气参数匹配。两者共同构成了电力系统中重要的组成部分,为电能传输和分配提供了坚实的基础和技术支持。
关键词:
发布时间:2024-11-07 10:24 阅读量:854 继续阅读>>
400mA、高输出压摆率,纳芯微NSOPA240x系列破解旋转<span style='color:red'>变压器</span>之“难”
  随着市场对高精度、高性能电机控制技术的不断追求,旋转变压器作为其核心部件之一,其精确测量角度位置和转速的能力显得尤为重要。  然而,旋转变压器驱动电路的特殊要求一直是行业发展的技术瓶颈。为解决这一挑战,纳芯微近日发布了全新的NSOPA240x系列运算放大器,旨在简化电路设计并提高系统鲁棒性,为旋转变压器驱动应用带来创新性的解决方案。  旋转变压器作为一种电磁式传感器,可用来精确测量角度位置和转速,在工业电机控制、伺服器、机器人、电动和混动汽车中的动力系统单元中得到了广泛应用。特别是在电动车辆中,旋转变压器可以为电机控制算法提供精确且稳定的位置信息,这对于确保电动车辆在各种驾驶条件下的理想性能至关重要。通过其独特的工作原理,旋转变压器能够实时准确地反馈转子的角度和速度,使电动车辆的电机控制算法能够精确调整电流输出,实现平稳驾驶和即时响应。此外,旋转变压器具有耐高温、机制简单可靠、尺寸小巧和成本低廉等优势,使其能够适应电动车辆紧凑的设计需求,并降低整体成本。  在实际应用中,旋转变压器驱动电路的设计面临多重挑战。首先,需要满足高电流输出和高压摆率的要求,以确保为旋转变压器提供稳定的激励信号,其次,简化电路设计和提高系统鲁棒性也是工程师们面临的重要问题。此外,复杂的噪声环境和严格的安全性要求也给设计带来了更多困难。  纳芯微NSOPA240x大电流输出运算放大器产品凭借其卓越的高增益带宽和压摆率,以及连续高输出电流驱动功能,满足了旋转变压器初级线圈对低失真和差分高振幅激励的严格要求。更重要的是,NSOPA240x内部集成了热关断和过流保护,不仅优化了电路设计,也降低了系统成本,还显著提高了整体系统的可靠性和性能表现。  NSOPA240x产品系列的车规级别满足AEC-Q100 Grade 1的可靠性要求,可在-40~125℃的严苛环境下胜任工作。不同的通道版本以满足客户不同需求,对应单通道有TO252-5封装,双通道版本有HTSSOP14封装,如下表格所示  大电流输出能力  适应各类旋变原边线圈的驱动  输出电流能力和输出摆幅是衡量功率放大器驱动能力最重要的指标之一,负载电流与输出摆幅之间的关系直接决定在驱动运放上的耗散功率。旋转变压器的励磁原边线圈通常是有很低的DCR (直流电阻),通常小于100Ω,因此需要有较强的电流输出能力才可以驱动线圈,最高至200mA。NSOPA240x设计为最高400mA持续输出电流能力,完全满足各类旋转变压器驱动要求。  高输出压摆率  保证原边线圈激励信号不失真  压摆率是反应运算放大器动态响应性能的重要性能指标之一,对于正弦信号不失真的最低要求如以下公式所示:  对于不同类型的旋转变压器的来说,对于激励信号的幅度和频率要求都有所不同。以7Vrms,10kHz的激励信号为例,根据上述公式的计算结果,保证不失真所需的最低压摆率为0.6 V/μs左右。NSOPA240x压摆率为5.5 V/μs,,可以满足旋转变压器驱动的大部分应用需求。  集成限流保护,过热保护  提高旋变系统的可靠性,降低复杂性和成本  对于选旋转变压器原边驱动端这种几百mA级别的功率级别,必须具有完善的保护措施,否则就会因为过热等原因对系统产生严重的威胁甚至烧毁。NSOPA240x集成了热关断的保护功能,当芯片结温超过173℃时,器件将被禁用,通过OTF/SH_DN状态指示热关断事件发生。为了防止反复触发,过温关断功能具有温度滞回,结温需要回落到155℃,器件才会被重新使能,OTF/SH_DN引脚状态也随之改变,指示热关断事件停止。  如下图所示,NSOPA240x可以提供客户系统级功能安全,可以同时指示短路到电源,短路到地。  除此之外,芯片中的每个运放都对PMOS(高侧)和NMOS(低侧)输出晶体管进行限流保护,因为过流可能发现在上管或者下管。且配备了两个专用引脚(如图中红框所示),可用来区分上管过流或下管过流,分别对应短路到地和短路到供电电压的应用场景。当输出电流回到正常值时,将同步释放指示引脚,使系统轻松应对类似ISO16750标准中规定的短路测试场景。
关键词:
发布时间:2024-06-17 13:18 阅读量:848 继续阅读>>
纳芯微推出高性价比的推挽<span style='color:red'>变压器</span>驱动NSIP605x系列,支持客户多样化灵活设计
  纳芯微今日宣布推出高性价比的推挽变压器驱动NSIP605x系列。该系列包括输出功率为1W的NSIP6051和输出功率为5W的NSIP6055。其中,NSIP6055提供两个版本:开关频率为160kHz的NSIP6055A,可用于对EMI要求更严格的系统应用;以及开关频率为420kHz的NSIP6055B,可用于对提高转换效率和缩小变压器尺寸有需求的系统应用。  高性价比的NSIP605x系列专为对占板尺寸无特别要求的成本敏感性系统而设计,相比内部集成了变压器的同类器件,NSIP605x可在提供相似系统性能的前提下,具有更高的性价比。NSIP605x系列是对纳芯微现有产品组合的有力补充,通过灵活轻量化的配置可支持客户多样化的系统设计需要,广泛适用于工业、汽车和可再生能源等领域。  出色的EMI和ESD性能助力缩短系统设计时间  得益于纳芯微久经验证的EMI优化技术,NSIP605x系列通过对输出开关电压的转换速率控制和扩频时钟(SSC)可实现超低噪声和EMI,外围电路仅需简单配置即可满足CISPR25 Class 5要求。ESD性能方面,NSIP605x实现了±8kV 的ESD (HBM)和±2kV的ESD (CDM)性能。出色的EMI和ESD特性使客户可以更加快速便捷的完成系统整体调试,缩短设计时间。  通过纳芯微丰富的产品布局满足不同设计需要  NSIP605x系列推挽变压器驱动是纳芯微推出的高性价比产品系列的新成员。纳芯微亦提供其他高性能、高集成度的产品选择,包括集成了变压器和多通道数字隔离器的NSIP88/89xx系列和NIRSP31x系列;以及集成了变压器和隔离接口的隔离式RS485收发器NSIP83086,和隔离式CAN收发器NSIP1042。纳芯微全面的产品布局可满足各种类型客户多样化的系统设计需要,为不同客户提供一站式的芯片解决方案。  封装和选型  NSIP6051支持SOT23- 5L封装,NSIP6055支持SOT23- 6L封装。NSIP605x系列提供工规和车规版本,工规版本已于近期量产,车规版本将于2024年7月量产。
关键词:
发布时间:2024-05-14 10:13 阅读量:880 继续阅读>>

跳转至

/ 8

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码