蔡司:扁线电机如何打造质量管控的“护城河”?

Release time:2024-03-05
author:AMEYA360
source:蔡司
reading:1853

  一、扁线电机的应用及其优势

  随着新能源汽车的快速发展,电驱系统成为了其中最为内卷的部分。新能源车企为了增强整车竞争力,对电驱系统提出了高功率密度、高效率、高压化、高NVH性能、低成本的要求。

蔡司:扁线电机如何打造质量管控的“护城河”?

  在提高效率方面,随着铜满率的提升,在相同的输入电流的情况线下,直流铜损耗更低,可大幅提升电机的效率,尤其是在低速的情况下,可显著提升CLTC工况效率。

  在提高功率密度方面,随着铜满率的提升,在保证电机温升的同时,可以输入更多电流,增加电负荷,降低电机的体积和重量,从而提升电机的转矩密度和功率密度。

  在高压化方面,扁线电机更能适应高压化。由于扁线的规则排列,首匝和末匝不接触,从而降低了高压击穿的风险。同时在扁线上增加绝缘漆层的厚度要比圆线更为容易,因此适合更高电压的系统。

  在舒适度方面,因为扁线电机采用截面积更大的Pin线作为绕组,其绕组刚度要高于圆线绕组,可以改善电机的NVH性能。

  在低成本方面,扁线绕组可以实现自动化生产,节约大量人工成本,使生产费用降低。

蔡司:扁线电机如何打造质量管控的“护城河”?

  二、扁线定子工艺流程及检测

  扁线电机是相对于圆线电机的一种统称,扁线电机主要的形式有Ipin、Hairpin、Wpin、Xpin等。Hairpin虽然在性能、尺寸上不是最优的,但针对每个技术点Hairpin却是比较好的解决方案,下图就是一款Hairpin绕组的制造工艺:

蔡司:扁线电机如何打造质量管控的“护城河”?

  上述生产工艺过程中,红色框内产品工艺过程的质量控制至关重要。

  首先,在扁线绕组制作过程中,对于Pin线的成型、Pin线端部的折弯精度、插线的一致性、装配精度等都有着较为严格的要求。为了提升加工精度,除了高标准的生产设备及原材料,还需要从工艺上加强对产品质量和加工精度的监控。

  其次,生产过程中零部件的快速无损检测,是提升产品质量的有效手段。

  三、先进的非接触式扁线测量技术

  01、扁线定子单Pin质量控制

  扁铜线加工需经过校直和去漆等工序。如果扁线表面存在缺陷,就会影响定子绕组的绝缘性能。尤其是在800V电压系统中,更要严加管控扁线绝缘质量。

  扁线具有柔性结构和半透明的漆绝缘层,这给靠触觉测量的传统方法带来了很大的挑战。传统的探针或相机传感器无法完美满足测量需求。在此背景下,非接触式光学测量应运而生。

  蔡司的DotScan系列,就是采用色阶共聚焦白光探头,来区分透明漆表层和其下方的金属层。并配备有三种探头的尺寸,适用于三种不同的测量范围:10mm 、3mm、1mm。探头可在一次CNC运行期间全自动更换,以适用于不同的表面或改换其他光学探头。关节轴每次可移动一定的角度,将探头调整到垂直于待测部件位置。

  02、扁线电机定子及总成全域检测方案

  为了保证电机在运行过程中,转矩的变化不破坏定子和壳体的连接,现在主流的设计是定子和壳体采用过盈配合的方式。在此制造工艺过程中,过盈配合对扁线绕组、定子和壳体表面尺寸提出了更高的精度要求。

  为了 获取更精确的全域数据,以获得超出图纸要求的产品完整信息,并且可以实现数字化装配,蔡司推出了能够高效获取数据的ATOS三维光学测量系统,这点对于从研发到品控具有更深层的意义。

  并且在尺寸测量领域,全域数据在进行形位公差测量的同时,还可以针对被测工件与其CAD 3D模型进行曲面比较。使用后可以通过色差图非常直观地获取产品表面误差信息。

  在生产过程中,采用过盈配合工艺,全域数据可以用于过程中的失效分析。通过采集装配失效工件的全域数据,使用软件进行虚拟交叉装配,并模拟应力。这也是当前电驱企业开发和质量控制数字化转型的重点发展方向。

  03、扁线定子端部焊球区的缺陷无损检测

  和尺寸测量

  在扁线电机定子的制造环节中,需要在定子端部把一根根的Pin线焊接起来。焊接都是基于高温熔化的方式,如果工艺参数选择不当,会损伤扁线焊点周围的漆膜,从而导致绝缘漆膜可靠性下降。因此在焊接完成后,需要通过严格的检测来确认扁线焊接的质量。

  扁线电机的焊点数量多,要实现稳定检查存在一定的难度。以8层Hairpin定子为例,48个槽,平均每个槽4个焊点,那总共就有192个焊点。如果想要一次性完成检测,设备中负责检测的相机视野范围就要足够大,对光源打光要求也极高。

  机器视觉可以对焊接部分进行表面检测,但在焊接缺陷检测上却力有未逮。在焊接过程中,未剥离干净的Pin线绝缘漆或不良的焊接,会导致焊缝的孔隙,进而导致电机性能损失,甚至是完全损坏。所以还需要一种无接触式的非破坏性的数字化检测手段,来实现对焊缝缺陷的检测。

  为了破解这个难题,蔡司开始将工业CT应用于扁线绕组焊接缺陷检测。主要是针对扁线的焊球缺陷和绝缘涂覆层的厚度进行无损检测,同时还有针对焊球之间的间距,焊球相对电机主基准系的位置度及焊球是否偏离中心点等。

  这里蔡司引入了“全域体素数据”的检测理念,让用户可以首先获得ROI的内构数据,然后同时用于缺陷和尺寸的质量控制。

  蔡司工业CT产品METROTOM不仅可以实现对Pin线焊缝的内部孔隙的检测和定位,还能在非破坏性的质量检测过程中,将有缺陷的定子隔离出来。

  由于蔡司CT的无损检测和全域数据的技术加持,电机用户就可以非常容易的对比不同工艺参数对电机质量的影响。对绕组的检测结论也更为一目了然。通过这些检测后的数据得到工艺参数调整的最优解,同时也可以对产线上的产品做无损的全域检测。

  四、总结

  扁线电机以其高效率、高功率密度等特点,在新能源驱动电机中逐渐成为主流技术。

  扁线电机的Pin线绝缘、形位公差检测和焊点质量检测在扁线电机生产工艺中占有非常重要的位置。需要更为先进的非接触式和数字化手段来保证扁线电机的质量。

  应用先进的检测设备,可有效协助企业进行扁线定子的全方位质量管控,从而促进电机开发和质量管控的数字化进程,建立起质量的“护城河”。

("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
蔡司 arivis:体电子显微镜数据分析新利器
  体电子显微镜在生物微观结构研究中展现出巨大潜力,但伴随而来的是海量二维数据处理分析的难题。科研人员面临挑战包括:生物结构复杂,电镜图像灰度单一,阈值分割方法效果不佳;电镜图像缺乏荧光标记辅助区分结构,分割难度大;冷冻体电镜图像处理复杂度高于常温,深度学习应用亦受限,常需手动操作;大数据量导致软件处理效率下降,消耗大量时间和精力。  针对上述问题,蔡司 arivis 集成机器学习与深度学习技术,专为科研打造,能高效执行图像处理、分割、三维重建及数据分析,革新科研工作流程。  更精准的图像分割及三维重构  arivis 提供两种 AI 算法,即语义分割和实例分割,能够更加灵活且精准地完成对生物样本特定结构的图像分割及三维重构。研究人员只需在图像上进行简单涂画,标注所需分割的图像信号,即可借助机器学习和深度学习提取想要的结构进行三维重构,让您发掘更多细节。  流畅的三维可视化分析体验  arivis 提供多样化的直观界面展示方式——旋转、缩放、切片,让样本的微观构造在任意视角下纤毫毕现,助您深入探索每一个细微之处。  简化AI模型训练流程  arivis 不仅仅是在本地PC端实现智能分割的得力助手,蔡司更引领创新,推出 arivis 在线版(arivis Cloud)。该云平台依托深度学习技术,免去硬件限制,让您随时随地,仅需一个浏览器,不论是手机、iPad 还是笔记本,都能轻松访问并在线定制个人专属的深度学习分割模型。此模型进一步支持三维可视化呈现、数据量化分析,并配备完善的标注、测量和分析工具,精准对接您的个性化科研需求。最后,通过 VR 技术,我们邀您沉浸式探索数据新维度,体验前所未有的科研之旅。  高效数据处理引擎  arivis 提供了一流的数据处理能力,得益于其独特的算法,该软件无需占用大量内存资源,也不限定于高端硬件配置,这意味着研究者能使用成本更低的计算机系统去高效处理包括但不限于体电子显微镜在内的多渠道2D、3D、4D乃至5D图像数据集。无论面对的数据规模如何庞大,即使是TB级别以上,arivis均能轻松驾驭,显著缩短处理时间,为科研活动提速,提升整体研究效率。  广泛设备接入与数据格式支持  arivis 具有卓越的兼容性,无缝对接多种品牌及型号的体电子显微镜设备,确保您的实验无论采用哪种尖端仪器,均可顺利导入 arivis 进行图像处理。超过60多种的图像文件格式,让数据导入过程变得便捷无阻,无论是通用的.tif、.jpg格式,还是专业的.raw、.czi等科研图像格式,皆能轻松处理。  定制化处理新境界  为进一步提升灵活性与扩展性,arivis 不仅仅是一款强大的图像处理软件,它还内置了 Python 编程环境,让您能够直接在软件内编写脚本,实现高度个性化的图像分析流程。无论是进行复杂的数据预处理、高级特征提取,还是独特的图像分析算法开发,arivis 都将成为您的强大后盾,助您探索科研新领域。
2025-03-18 16:12 reading:263
蔡司 ART 5.0 重磅来袭,重塑X射线显微成像的智能体验!
  科技无界,探索不止。蔡司高级重构工具箱 ART 5.0 版本正式发布,以三大核心突破重新定义X射线显微镜(VersaXRM)的成像边界,为您开启智能成像体验!  更清晰:DeepRecon Pro ImageClarity™,细节尽显  告别噪点困扰,迎接极致清晰!  全新DeepRecon Pro ImageClarity™通过深度学习算法,在降噪的同时完整保留关键特征。无论是微纳米级结构,还是材料内部缺陷,细微特征纤毫毕现。  内置「图像差异对比」功能,一键切换比对标准重建与 AI 优化结果,确保去噪不丢细节,让每一份数据都经得起推敲。  更精准:ROI训练+AI引擎,成像偏差精准消除  ART 5.0 首次实现「感兴趣区域(ROI)训练」功能,支持为 DeepRecon Pro 和 DeepScout 定制专属模型。通过聚焦关键区域,系统智能识别并消除背景干扰与成像偏差,让图像细节更加精准。  搭配新一代 AI 运算引擎,重构效率大幅提升,复杂样本处理时间显著缩短,助您快速获取高质量成像结果!  更高效:透明模型管理,多端协同作业  ART 5.0 以智能化管理为核心,为您提供更高效的实验体验。  可视化的模型数据库:一站式管理所有训练模型,关键参数、应用场景一目了然,快速调用已有模型  多平台同时接入:全新架构支持多设备协同,多端进行模型训练和数据重构列队,效率倍增  重构服务器状态监控:实时监控多客户端任务队列,实验室资源智能调度,彻底告别「重建拥堵」  结语  蔡司高级重构工具箱 ART 自发布以来,始终致力于帮助不同领域的客户提升成像效率与质量,此次迎来 ART 5.0 版本,不仅是蔡司 X 射线显微成像技术的又一次自我突破,更是智能化成像时代的崭新起点。
2025-03-12 09:45 reading:260
蔡司 Lightfield 4D 重新定义动态生命观测新纪元
  要真正捕捉生命过程的本质,必须跨越三维空间与时间维度同步观测,但活体 4D 成像始终被四重枷锁制约:  毫秒级的生理活动远超于传统显微帧率的极限  高强度重复光照导致样本失活,观测即终结  大体积多色图像的采集时间限制成像通量  跨尺度成像时,需要频繁移动样品  全新共聚焦系列蔡司 LSM 910 和蔡司 LSM 990 搭载的 Lightfield 4D 成像技术,只需轻轻一拍,即可获取全面的三维信息,体积成像内毫无延迟,实现四维动态观测。它首次以高达每秒 80 个体积的速度捕捉生命动态的时空信息,以突破性的速度揭开生命动态的神秘面纱。  一次拍摄 一个体积 获取生理学和神经高速变化过程的三维信息  传统显微技术难以捕捉昆虫血淋巴中血细胞的高速三维运动轨迹。同时,生物体内的生理过程在「成像速度」与「三维信息量」间也难以取舍。  Lightfield 4D 技术利用独特的“一拍一体”(one snap, one volume)优势,以每秒 80 个体积的速度捕获生物体内的生理过程,使在完整体积中进行高时空分辨率的成像成为可能。您还可以利用蔡司 arivis Pro 高级图像智能分析软件,分割并追踪单个血细胞的空间运动轨迹。  更小曝光 更多信息 长时间温和地观察整个生物体  传统显微技术难以在遗传筛选实验中实现长时间无损活体成像,更难以同步捕捉毫秒级细胞运动轨迹与数日级器官形态变迁的过程。  数据显示,在斑马鱼耳囊发育筛选中,运用蔡司 Lightfield 4D 技术对多基因型胚胎进行16小时动态观测和三维追踪,体积成像时间间隔为2分钟。该技术使基因调控与器官形态的时空耦合过程得以深度解析,推动发育生物学迈入动态机制验证的新阶段。  快速采集 提高通量 加速采集多标大样品信息  传统三维成像技术受限于 Z 轴逐层扫描,使三维细胞球的体成像耗时冗长,进而限制通量,导致药物筛选效率低下。  Lightfield 4D 成像技术凭借瞬时体成像和大视野覆盖的显著优势,单次拍摄即可获取完整球体空间结构,并以颠覆性的速度获取多色样品的体积成像数据,从而显著提高实验效率。  同一平台 更多可能 高速体成像与共聚焦众多功能相结合  大脑主要由密集的神经元和神经胶质细胞构成,其神经元活动通过钙离子信号的变化表征,这些信号以毫秒级时间尺度快速发生。然而,大多数成像技术难以同时实现高时空分辨率,大多局限于单一平面或微小体积内的信号记录。  Lightfield 4D 能够快速记录更大的体积,以追踪神经元的活动情况。⁣您可以捕捉到相距100 μm 或更远的神经元同时发射的信号,从而获得对神经元回路的全新认识。  总结  蔡司 Lightfield 4D 技术以独有的成像方式,单次曝光就能获取整个生物体的三维图像信息,且体积内没有任何时间延迟。不同于传统的二维成像方式,Lightfield 4D 通过物镜和相机之间的微透镜阵列,单次曝光即可捕获 37 幅来自不同空间和角度的独立图像,从而得到生物体的体积图像信息。  同时每次生成体积图像时,超低光毒性让长时间捕获生命体内不同位置的快速生理活动成为可能,用更温和的观测,为您解密更锋利的科学难题。
2025-03-12 09:31 reading:266
蔡司工业测量自动化遇上OPC UA:开启智能制造新篇章
  在工业自动化的复杂网络中,不同设备和系统之间的通信顺畅与否,直接决定了生产效率与管理效能。而 OPC UA,即开放式平台通信统一架构(Open Platform Communications Unified Architecture),正逐渐成为这个领域中备受瞩目的 “通用语言”。  OPC UA 是一种面向服务的通信协议,专门为解决工业自动化及物联网设备与云端服务器之间的通信难题而设计。在过去,各设备制造商往往采用各自私有的通信协议,就好比不同国家的人说着完全不同的语言,彼此之间难以交流。这使得不同品牌、不同型号的设备在集成时困难重重,数据交换和系统集成成本高昂。一家工厂可能同时使用了来自 A 公司的自动化生产线设备和 B 公司的质量检测设备,由于两者通信协议不同,要实现生产线数据与质检数据的实时交互,就需要耗费大量的时间和资源进行协议转换与系统适配。  OPC UA 的出现,就像是为工业领域引入了一种全球通用的语言,让不同设备能够顺畅 “交流”。它定义了一套统一的通信标准和数据模型,涵盖了设备的各种信息,从实时运行数据到设备状态、报警信息等,所有支持 OPC UA 协议的设备,无论其来自何方、采用何种硬件架构或操作系统,都能按照这个统一的规范进行数据的发送、接收和解析 。这种统一的通信方式,不仅大大降低了工业系统集成的难度,还提高了系统的可靠性和可扩展性,为工业自动化迈向更高水平奠定了坚实基础。  当蔡司邂逅OPC UA  一、无缝集成,数据畅流  当蔡司工业测量设备与 OPC UA 相遇,一场数据交互的革新就此展开。蔡司的三坐标测量机、光学测量仪等设备,通过专门开发的 OPC UA 接口模块,能够与 OPC UA 服务器实现无缝对接。以往,测量数据的传输需要人工手动导出并录入到生产管理系统中,过程繁琐且容易出错,数据更新也不及时 。如今,通过 OPC UA 技术,蔡司三坐标测量机在完成零部件测量后,能将尺寸数据、形状偏差等测量结果实时、自动地传输给 OPC UA 服务器,再由服务器快速转发至生产管理系统和质量监控平台。这使得生产线上的工作人员能够第一时间获取最新的测量数据,及时调整生产参数。  二、实时监控与智能决策  基于 OPC UA,蔡司设备实现了数据的实时传输,为企业的生产管理和决策提供了强大支持。蔡司的高精度测量设备可对电路板上的电子元件进行测量,测量数据以毫秒级的速度通过 OPC UA 传输到监控中心。管理人员通过监控系统的可视化界面,能够实时查看每一台蔡司设备的运行状态、测量任务进度以及测量数据的动态变化趋势。  这些实时数据不仅用于生产过程的监控,更是企业做出智能决策的关键依据。通过对大量历史测量数据的分析,结合机器学习算法,企业可以预测设备的故障发生概率,提前安排维护保养,避免因设备故障导致的生产中断。  三、提升系统兼容性与扩展性  OPC UA 极大地增强了蔡司系统与其他设备的兼容性。在工业 4.0 的大环境下,制造企业的生产系统往往由多个品牌、多种类型的设备组成,不同设备之间的兼容性至关重要。蔡司的测量设备借助 OPC UA 协议,能够轻松与诸多品牌的 PLC 控制系统,以及各类工业机器人、自动化生产线设备进行通信和数据交互。  从未来扩展的角度来看,OPC UA 为蔡司工业测量自动化打开了无限可能的大门。随着物联网、人工智能等新技术的不断发展,企业对工业测量的需求也在不断演变。OPC UA 的开放性和可扩展性,使得蔡司能够方便地集成新的传感器技术、数据分析算法和软件功能,快速响应市场变化和客户需求。  未来展望:蔡司与OPC UA 携手前行  展望未来,蔡司工业测量自动化与 OPC UA 的结合将迈向更广阔的发展空间。随着工业 4.0 和智能制造的深入推进,生产过程对实时性、精准性和智能化的要求将持续攀升。蔡司将在 OPC UA 的基础上,进一步拓展测量设备的功能边界 。
2025-02-21 11:14 reading:303
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
model brand To snap up
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code