如何抑制<span style='color:red'>开关电源</span>产生的电磁干扰?常见的EMC/EMI问题和解决方案分享
  开关电源在运行过程中常常会产生电磁干扰(Electromagnetic Interference,EMI),可能对周围的电子设备、通信系统及无线网络造成负面影响。因此,有效抑制开关电源产生的电磁干扰对电子产品设计非常重要。本文将探讨如何抑制开关电源产生的电磁干扰,以及常见的电磁兼容性(Electromagnetic Compatibility,EMC)和电磁干扰(EMI)问题及相应的解决方案。  01抑制开关电源电磁干扰的方法  1.1 滤波器  输入滤波器:在开关电源输入端添加滤波器,可以有效地滤除高频噪声,减少电磁辐射。  输出滤波器:在输出端加入滤波器,可以降低输出端的电磁干扰,保证输出电压的纹波度。  1.2 地线设计  良好接地:确保设备的各个部分有良好的接地,减少地回路导致的辐射和传导干扰。  1.3 屏蔽技术  屏蔽罩:采用金属屏蔽罩覆盖开关电源模块,阻隔电磁波的辐射,减少外界干扰。  1.4 布线设计  合理布线:合理设计信号线和电源线的走向和距离,减少互相干扰。  02常见的EMC/EMI问题与解决方案  2.1 互相干扰  问题:不同电路之间由于电磁耦合引起相互干扰。  解决方案:合理隔离信号线和电源线,避免过近布线;采用屏蔽罩等技术隔离电路。  2.2 辐射干扰  问题:开关电源工作时产生的高频电磁波辐射影响周围设备。  解决方案:添加滤波器、使用屏蔽罩、优化地线设计等方式减少辐射。  2.3 传导干扰  问题:开关电源通过电源线传导干扰到其他设备。  解决方案:优化电源线的布局,增加滤波器,确保接地良好。  2.4 选择合适元件  问题:使用不合适的元件可能导致电磁干扰问题。  解决方案:选择符合EMC标准的元件,如滤波电容、电感等,以降低干扰。  为了验证设备的电磁兼容性,通常需要进行EMC测试并获得认证。主要的EMC测试包括辐射测试和传导测试,以确保设备符合相关的国际或行业标准。  在当今电子产品日益普及的背景下,抑制开关电源产生的电磁干扰显著重重要。有效的EMI抑制不仅可以提高产品的性能和可靠性,还可以避免对周围环境和其他设备造成干扰。通过采取合适的措施,如滤波器、良好的接地设计、屏蔽技术和合理的布线规划,可以有效减少开关电源产生的电磁干扰。
关键词:
发布时间:2025-12-29 15:22 阅读量:343 继续阅读>>
如何为<span style='color:red'>开关电源</span>(如Buck电路)计算和选择合适的电感、电容
  在电子系统中,开关电源是一种常见的电源转换器,用于将输入电压转换为所需输出电压。在开关电源设计中,合适的电感和电容的选择非常重要。本文将深入探讨如何计算和选择开关电源(如Buck电路)中的电感和电容,以实现良好的性能和稳定性。  1. 什么是Buck电路?  Buck电路是一种常见的降压型开关电源电路,通过调节开关管的通断来实现输入电压向下转换为输出电压。在Buck电路中,电感和电容是关键元件,用于滤波、储能和稳定电压输出。  2. 如何选择合适的电感?  2.1 电感的作用  电感在Buck电路中起着平滑输出电流、储存能量和限制电流波动等重要作用。正确选择电感可以提高转换效率和减小输出波纹电流。  2.2 电感选取方法  计算工作电流范围:根据负载电流和开关频率确定工作电流范围。  计算感应电压:根据电感公式和最大负载电流计算感应电压。  选择合适的电感值:结合电感公式和典型值,选择能够支持所需电流且具备合适感应电压的电感。  3. 如何选择合适的输出电容?  3.1 输出电容的功能  输出电容在Buck电路中用于储存能量、减小输出电压波纹并提供稳定输出电压。  3.2 电容选取方法  计算输出电压波纹:根据负载电流变化和输出电压要求,计算所需的输出电压波纹。  根据电容公式选择:结合输出电压波纹要求和开关频率,选择合适容值的输出电容。  4. 常见问题与解决方案  4.1 输出电压波动大  解决方案:增加输出电容容值或更换更低ESR(等效串联电阻)的电解电容。  4.2 效率低或温升过高  解决方案:重新计算电感值,优化布局,降低开关损耗,或选择功率损耗更小的电感和电容。  在设计Buck电路时,正确计算和选择电感和电容可以帮助提高转换效率、稳定性和输出质量。设计人员需要综合考虑工作条件、输出要求和性能指标,结合理论计算和实际经验,选取适合的电感和电容,以确保开关电源系统的稳定可靠运行。
关键词:
发布时间:2025-12-24 11:49 阅读量:372 继续阅读>>
如何调试和解决<span style='color:red'>开关电源</span>的“启动失败”问题(尤其是重载或容性负载下)
  在开关电源系统中,“启动失败”是一种常见且令人烦恼的问题,特别是在重载或容性负载条件下。这种情况可能导致电源无法正常启动或持续工作,严重影响整个系统的稳定性和可靠性。本文将探讨如何调试和解决开关电源启动失败问题,特别是在面对重载或容性负载时。  1. 开关电源启动失败的原因  1.1 过载保护  在重载情况下,开关电源可能会触发过载保护机制,导致启动失败以保护电路和元件不受损坏。  1.2 容性负载  当开关电源连接到容性负载(如大容值的电容)时,电源启动时需要克服电容的充电电流峰值,可能导致启动困难或失败。  1.3 其他原因  电压波动、短路、过压、过温等因素也可能导致开关电源启动失败。  2. 调试步骤  2.1 检查输出  首先检查开关电源输出是否有电压输出。若没有输出,可能是电源模块故障或输入电压异常导致启动失败。  2.2 检查负载情况  确认负载状态,尤其是是否处于重载或连接容性负载的情况,这些情况可能导致启动失败。  2.3 检查保护装置  检查过载保护、短路保护等功能是否触发,导致电源无法正常启动。重置保护功能后再次尝试启动。  2.4 观察启动过程  观察启动过程中开关电源的工作状态、指示灯等,判断是否出现异常情况。  3. 解决方法  3.1 提高启动电流能力  对于容性负载情况,可以通过提高开关电源的启动电流能力来应对启动失败问题。选择具备更大启动电流能力的电源模块或升级电源设备。  3.2 添加软启动电路  在设计中添加软启动电路,逐渐增加输出电压并减小上升时间,有助于降低启动时的冲击电流,避免启动失败。  3.3 调整保护参数  对于过载保护等保护参数,可以适当调整参数设置,延迟保护动作时间或提高保护阈值,以确保在合理范围内对异常负载做出响应。  3.4 优化电路布局  优化电路布局,减小信号线长度、降低回流路径电感等措施,有助于减少启动时的干扰和电磁辐射,提高启动成功率。  4. 注意事项  在调试和解决开关电源启动失败问题时,务必注意安全,避免直接接触高压部分。  可以使用专业的测试设备(如示波器、多用表)进行测量和诊断,以便更准确地确定问题所在。
关键词:
发布时间:2025-12-24 11:46 阅读量:373 继续阅读>>
散热设计有哪些关键点?如何估算和优化<span style='color:red'>开关电源</span>的热性能
  在电子设备中,散热设计是至关重要的一环,特别是对于高功率密度的开关电源而言。有效的散热设计可以确保设备运行稳定,延长元件寿命,避免过热损坏。本文将探讨散热设计的关键点以及如何估算和优化开关电源的热性能。  1. 散热设计的关键点  1.1 热阻  热阻是散热设计中的核心概念,表示材料或结构对热传导的阻碍程度。通过降低热阻,可以提高散热效率。  1.2 热传导路径  合理规划热传导路径,将热量从热源传递到散热器,并最终散去至外部环境,是散热设计中的重要考虑因素。  1.3 散热器选择  选择合适类型和尺寸的散热器可以有效提高散热效率,如风冷散热器、液冷散热器等。  2. 开关电源热性能的估算  2.1 功耗计算  首先需要准确计算开关电源产生的功耗,包括转换效率、负载情况等因素。  2.2 热设计参数  根据功耗计算结果,确定开关电源的热设计参数,包括最大工作温度、热阻要求等。  2.3 热仿真分析  利用热仿真软件进行热分析,预测不同工作条件下开关电源的温度分布,帮助评估散热设计的有效性。  3. 开关电源热性能的优化  3.1 提高散热器效率  选择高效的散热器并优化散热路径,以提高热量散发速度,降低开关电源温度。  3.2 优化散热器布局  合理布局散热器,使其位置合理、通风良好,避免热量积聚和局部过热现象。  3.3 降低功耗  通过优化电路设计、提高转换效率等措施,降低开关电源的功耗,减少热量产生,从而改善散热需求。  4. 实际案例分析  4.1 某型号开关电源  在某型号开关电源中,由于散热设计不足,经常出现过热现象,影响设备稳定性和寿命。  4.2 解决方案  通过增加散热器数量、优化散热路径和降低功耗等措施,成功改善了开关电源的热性能,确保设备正常运行。  散热设计是确保开关电源稳定性和可靠性的关键因素之一。通过了解散热设计的关键点、正确估算和优化开关电源的热性能,可以有效提高设备的使用寿命和可靠性。通过合理选择散热器、优化热传导路径、降低功耗等方法,可以有效解决开关电源过热等问题,提升整体性能。在实际应用中,工程师需要结合理论知识和实践经验,针对具体情况进行热设计方案的制定和优化。
关键词:
发布时间:2025-12-18 14:32 阅读量:345 继续阅读>>
一文详解为什么<span style='color:red'>开关电源</span>在空载或轻载时无法正常启动或工作不稳定
  开关电源是现代电子设备中常用的电源供应方式,但有时在空载或轻载情况下可能出现无法正常启动或工作不稳定的问题。本文将探讨这种现象背后的原因和可能的解决方法。  1. 开关电源基本原理  1.1 工作原理  开关电源通过高频开关元件进行快速切换,将输入电压转换成稳定的输出电压,以供给各种电子设备使用。  1.2 控制电路  开关电源内部包含控制电路,负责监测输入电压、负载情况等参数,并调节开关元件的工作状态,以保持输出电压稳定。  2. 为何在空载或轻载时出现问题?  2.1 最小负载要求  开关电源一般需要一定的最小负载才能正常工作,如果在空载或负载较轻的情况下,可能无法维持正常的工作状态。  2.2 控制电路失效  当负载较轻时,控制电路可能无法准确检测输出电压波动,导致无法正确调节输出,从而造成工作不稳定。  2.3 谐振频率问题  高频开关元件的谐振频率需要匹配负载,如果负载过轻,可能无法达到合适的谐振频率,影响电路稳定性。  3. 解决方法  3.1 增加最小负载  可通过添加电阻等方式增加最小负载,使开关电源能够在空载或轻载情况下正常工作。  3.2 优化控制电路  对控制电路进行优化,提高对输出电压变化的检测灵敏度,确保在各种负载情况下都能稳定工作。  3.3 调整谐振频率  根据负载情况调整谐振频率,使其更好地适应当前负载状态,提高电路稳定性。  4. 案例分析  4.1 某型号开关电源  在某型号开关电源中,发现在轻载时无法正常启动或工作不稳定,经过分析发现是由于最小负载要求不符合导致的。  4.2 解决方案  通过增加最小负载的方式,成功解决了该型号开关电源在空载或轻载时的工作异常问题,确保了其正常稳定运行。  开关电源在空载或轻载时无法正常启动或工作不稳定是一个常见问题,可能由最小负载要求、控制电路失效或谐振频率问题等多种因素引起。通过增加最小负载、优化控制电路和调整谐振频率等方法,可以有效解决这类问题,确保开关电源的正常运行和稳定性。
关键词:
发布时间:2025-12-18 14:26 阅读量:367 继续阅读>>
<span style='color:red'>开关电源</span>PCB设计中不可忽视的6大关键步骤
  在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析。  1、原理图到PCB的设计流程  2、相关参数设置  相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些,最小间距至少要能适合承受的电压。在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。  焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而且走线与焊盘不易断开。  3、布局环节  实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。  例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降。因此,在设计印制电路板的时候,应注意采用正确的方法。  每一个开关电源都有四个电流回路:  ◆ 电源开关交流回路  ◆ 输出整流交流回路  ◆ 输入信号源电流回路  ◆ 输出负载电流回路  通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。  所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去。  电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。  这两个回路最容易产生电磁干扰,因此必须在电源中其它印制线布线之前先布好这些交流回路。每个回路的三种主要的元件滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,调整元件位置使它们之间的电流路径尽可能短。  建立开关电源布局的最好方法与其电气设计相似,最佳设计流程如下:  1)放置变压器  2)设计电源开关电流回路  3)设计输出整流器电流回路  4)连接到交流电源电路的控制电路  设计输入电流源回路和输入滤波器、设计输出负载回路和输出滤波器根据电路的功能单元,对电路的全部元器件进行布局时,要符合以下原则:  ● 首先要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小则散热不好,且邻近线条易受干扰。电路板的最佳形状为矩形,长宽比为3:2或4:3,位于电路板边缘的元器件,离电路板边缘一般不小于2mm。  ● 放置器件时要考虑以后的焊接,不要太密集。  ● 以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、 整齐、紧凑地排列在PCB上,尽量减少和缩短各元器件之间的引线和连接,去耦电容尽量靠近器件的VCC。  ● 在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样不但美观,而且装焊容易,易于批量生产。  ● 按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。  ● 布局的首要原则是保证布线的布通率,移动器件时注意飞线的连接,把有连线关系的器件放在一起。  ● 尽可能地减小环路面积,以抑制开关电源的辐射干扰。  4、布线环节  开关电源中包含有高频信号,PCB上任何印制线都可以起到天线的作用。印制线的长度和宽度会影响其阻抗和感抗,从而影响频率响应。即使是通过直流信号的印制线也会从邻近的印制线耦合到射频信号并造成电路问题(甚至再次辐射出干扰信号)。  因此应将所有通过交流电流的印制线设计得尽可能短而宽,这意味着必须将所有连接到印制线和连接到其他电源线的元器件放置得很近。  印制线的长度与其表现出的电感量和阻抗成正比,而宽度则与印制线的电感量和阻抗成反比。长度反映出印制线响应的波长,长度越长,印制线能发送和接收电磁波的频率越低,它就能辐射出更多的射频能量。  根据印制线路板电流的大小,尽量加粗电源线宽度,减少环路电阻。 同时使电源线、地线的走向和电流的方向一致,这样有助于增强抗噪声能力。  接地是开关电源四个电流回路的底层支路,作为电路的公共参考点起着很重要的作用,它是控制干扰的重要方法。因此,在布局中应仔细考虑接地线的放置,将各种接地混合会造成电源工作不稳定。  5、设计检查  布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求。一般检查线与线、线与元件焊盘、线与贯通孔、元件焊盘与贯通孔、贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。  电源线和地线的宽度是否合适,在PCB中是否还有能让地线加宽的地方。注意: 有些错误可以忽略,例如有些接插件的Outline的一部分放在了板框外,检查间距时会出错;另外每次修改过走线和过孔之后,都要重新覆铜一次。  复查根据“PCB检查表”,内容包括设计规则,层定义、线宽、间距、焊盘、过孔设置,还要重点复查器件布局的合理性,电源、地线网络的走线,高速时钟网络的走线与屏蔽,去耦电容的摆放和连接等。  6、设计输出  输出光绘文件的注意事项:  ● 需要输出的层有布线层(底层)、丝印层(包括顶层丝印、底层丝印)、阻焊层(底层阻焊)、钻孔层(底层),另外还要生成钻孔文件(NC Drill)  ● 设置丝印层的Layer时,不要选择Part Type,选择顶层(底层)和丝印层的Outline、Text、Line。  ● 在设置每层的Layer时,将Board Outline选上,设置丝印层的Layer时,不要选择Part Type,选择顶层(底层)和丝印层的Outline、Text。
关键词:
发布时间:2025-11-17 15:59 阅读量:493 继续阅读>>
<span style='color:red'>开关电源</span>的常见术语
  ● 拓扑结构(Topology)  开关电源的拓扑结构,是指功率变换的电路结构,不同的电路结构可以实现不同的电源变换。  ● 开关电源/开关电源稳压器(Switching Mode Power Supply/ Switching Regulator, SMPS)  一种基于晶体管或MOSFET工作在高频“开”“关”状态,配合电感、电容等储能元件实现电压转换与稳定的电能转换电路或设备。其核心原理是利用反馈控制(如PWM脉宽调制或PFM脉频调制)动态调整开关的占空比或频率,从而将波动的输入电压转换为精确稳定的直流输出电压。  ● 线性电源/线性稳压器(Linear Regulator)  线性电源或线性稳压器,以线性模式操作双极性或场效应功率晶体管(MOSFET),使得其工作在线性放大区,调节得到稳定的输出电压的一种电源类型。  ● 静态电流(Quiescent Current, IQ)  IQ是未输送给负载的直流偏置电流。器件的IQ越低,则效率越高。然而,IQ可以针对许多条件进行规定,包括关断、零负载、PFM工作模式或PWM工作模式。因此,为了确定某个应用的最佳降压调节器,最好查看特定工作电压和负载电流下的实际工作效率数据。  ● 关断电流(Shutdown Current)  这是使能引脚禁用时器件消耗的输入电流,对低功耗降压调节器来说通常远低于1 μA。这一指标对于便携式设备处于睡眠模式时电池能否具有长待机时间很重要。  ● 电流纹波系数 r  电流纹波系数(Current Ripple Factor),指开关电源电路中流过电感器的纹波电流 ∆I_L 与直流电流 I_(L,DC) 的几何比例。  ● 纹波电流(Ripple Current)  通常指功率电感上的纹波电流,又叫做峰峰值电流(peak-to-peak ripple current),其理论值定义为功率电感上直流电流的r倍。  ● 纹波电压(Ripple Voltage)  在直流电源输出中,由于整流滤波不完全或开关电路的高频切换,叠加在直流电平上的周期性交流成分。其幅值与输出电容的ESR、容量、电感电流波动、开关频率等因素相关,通常以工频或其整数倍频率(如50Hz/100Hz)或开关频率为主成分,并可能包含高频噪声。  ● 占空比(Duty Cycle)  在开关电源电路中,占空比是开关管导通时间与开关周期的比例,用于调节能量传递效率及输出电压。  ● 开关周期(Switching Cycles)T_SW  在连续导通模式下,指功率开关器件(如MOSFET)完成一次完整导通(ON)和关断(OFF)动作的时间间隔。与开关频率(Switching Frequency)互为倒数关系。  ● 导通时间 T_ON  降压型开关电源电路中,除非特殊说明,这里特指高边开关管处于导通状态的持续时间。  ● 关断时间 T_OFF  降压型开关电源电路中,除非特殊说明,这里特指高边开关管处于关断状态的持续时间。注意,这里的关断时间是针对高边开关管而言的。  我们知道,在同步降压型开关电源电路中,忽略死区时间的话,高边开关管处于关断状态,就对应着低边开关管是处于导通状态的。所以,此处高边开关管的关断时间 T_OFF 就对应着低边开关管的导通时间 T_(LS,ON) 。  ● 开关频率 F_SW  指功率开关器件(如MOSFET)在单位时间内完成导通(ON)与关断(OFF)动作的循环次数,数学上定义为开关周期的倒数,是开关电源的核心参数。  ● 最大负载电流(Maximum Load Current)  又叫额定输出电流(Rated Output Current),指开关电源电路能够提供的最大或额定电流能力。  ● 最小负载电流(Minimum Load Current)  有时,在某些特殊应用场合需要将BUCK电路默认在CCM连续导通模式下,可以通过在输出端增加一定阻值的电阻实现,该电阻就被称为“假负载(Dummy Load)”。  ● 输入功率(Input Power)  直流开关电源输入端的功率,等于输入电压与输入电流的乘积。  ● 输出功率(Output Power)  直流开关电源输出端的功率,等于输出电压与输出电流的乘积。  ● 损耗功率或功率损耗(Power Loss)  在开关电源上最终以热量的形式损失的电源功率,数值上等于输入功率减去输出功率。  ● 效率(Efficiency)  用百分比表示的总输出功率对有源输入功率的比率。通常在满负载、额定输入电压和25℃的环境温度时定义。  ● 等效串联电阻(Equivalent Series Resistance, ESR)  与理想电容串联的电阻值,它们一起模拟真正的电容的特性,是电容元件的特性参数之一。  ● 等效串联电感(Equivalent Series Inductance, ESL)  与理想电容串联的电感值,它们一起模拟真正的电容的特性,也是电容元件的特性参数之一。  ● 启动电流或浪涌电流(Inrush Current)  指电源电路或电气设备在接通输入电源的瞬间,因滤波电容快速充电而产生的瞬时峰值电流。其幅值远高于稳态输入电流,可能导致设备损坏或触发保护机制。  ● 输出电压精度(Output Voltage Accuracy)  衡量输出电压实际值与目标值之间的偏差范围,通常使用百分比表示。如输出电压目标值是3.300V,精度是±5%,那么允许的输出电压最小值是3.300V * 95% = 3.135V,最大值是3.300V * 105% = 3.465V。  ● 线性调整率(Line Regulation)  在特定负载电流条件下,当输入电压在额定范围内变化时,输出电压的变化量与标称输出电压的百分比比值。其值越小,表明电源对输入电压波动的抑制能力越强,是开关电源电路设计特性是否良好的评价指标之一,适用于LDO和DC-DC。例如,某BUCK标称线性调整率为0.3%/V,即输入电压每变化1V,输出电压仅波动0.3%。  ● 负载调整率(Load Regulation)  在输入电压保持额定值的条件下,当负载电流从“空载变化到满载”或“满载变化到空载”时,输出电压的最大偏移量与额定输出电压的百分比比值。其值越小,表明电源对负载变化的适应能力越强。例如,某BUCK标称负载调整率为0.5%,即负载电流从0变化到最大值时,输出电压波动不超过额定值的0.5%。  ● 输入电压欠压闭锁(Under-Voltage Lock-Out, UVLO)  一种电源保护机制,当系统输入电压低于预设阈值时,通过关闭电源输出或使芯片进入保护状态,防止电路在异常低电压下工作,这对于安全性要求很高的场景尤其重要。  ● 过温保护(Over-temperature Protection)或热关断(Thermal Shutdown)  一种通过监测关键部件(如芯片结温)实现的安全机制。当温度超过预设阈值时,热关断电路就会关闭转换器,放置器件高温损坏。
关键词:
发布时间:2025-10-24 16:31 阅读量:555 继续阅读>>
全面了解各元器件在<span style='color:red'>开关电源</span>中的命名与用途
  开关电源的外围电路非常复杂,使用的元器件种类也比较繁多,性能各异。要想设计出性能高的开关电源就必须弄懂、弄通开关电源中各元器件的类型及主要功能。开关电源的外围电路中使用的元器件大致可分为通用元器件、特种元器件两大类。  一电阻器的名称及作用  1、取样电阻  构成输出电压的取样电路,将取样电压送至反馈电路;  2、均压电阻  在开关电源的对称直流输入电路中起到均压作用,亦称平衡电阻;  3、分压电阻  构成电阻分压器;  4、泄放电阻  断电时可将电磁干扰(EMI)滤波器中电容器存储的电荷泄放掉;  5、限流电阻  起限流保护作用,如用作稳压管、光耦合器及输入滤波电容的限流电阻;  6、电流检测电阻  与过电流保护电路配套使用,用于限制开关电源的输出电流极限;  7、分流电阻  给电流提供旁路;  8、负载电阻  开关电源的负载电阻(含等效负载电阻);  9、最小负载电阻  为维持开关电源正常工作所需要的最小负载电阻,可避免因负载开路而导致输出电压过高,因为电源IC都有个最小占空比,所以在电源次级输出端必须接一个负载电阻。  10、假负载  在测试开关电源性能指标时临时接的负载(如电阻丝、水泥电阻);  11、滤波电阻  用作LC型滤波器、RC型滤波器、π型滤波器中的滤波电阻;  12、偏置电阻  给开关电源的控制端提供偏压,或用来稳定晶体管的工作点;  13、保护电阻  常用于RC型吸收回路或VD、R、C型钳位保护电路中;  14、频率补偿电阻  例如构成误差放大器的RC型频率补偿网络;  15、阻尼电阻  防止电路中出现谐振。  二电容器在开关电源中的名称及作用  1、滤波电容  构成输入滤波器、输出滤波器等;  2、耦合电容  亦称隔直电容,其作用时隔断直流信号,只让交流信号通过;  3、退藕电容  例如电源退藕电容,可防止产生自激振荡;  4、软启动电容  构成软启动电路,在软启动过程中使输出电压和输出电流缓慢地建立起来;  5、补偿电容  构成RC型频率补偿网络;  6、加速电容  用于提高晶体管的开关速度;  7、振荡电容  可构成RC型、LC型振荡器;  8、微分电容  构成微分电路,获得尖脉冲;  9、自举电容  用于提升输入级的电源电压,亦可构成电压前馈电路;  10、延时电容  与电阻构成RC型延时电路;  11、储能电容  例如极性反转式DC/DC变换器中的泵电容;  12、移相电容  构成移相电路;  13、倍压电容  与二极管构成倍压整流电路;  14、消噪电容  用于滤除电路中的噪声干扰;  15、中和电容  消除放大器的自激振荡;  16、抑制干扰的电容器  在EMI滤波器中,可分别滤除串模和共模干扰;  17、安全电容  含X电容和Y电容;  18、X电容  能滤除由一次绕组、二次绕组耦合电容器产生的共模干扰,可为从一次侧耦合到二次侧的干扰电流提供回流路径,防止该电流通过二次侧耦合到大地;  19、Y电容  能滤除电网之间串模干扰,常用于EMI滤波器中。  三电感器在开关电源中的名称及作用  1、滤波电感  构成LC型滤波器;  2、储能电感  常用于降压式或升压式DC/DC变换器电路中;  3、振荡电感  构成LC型振荡器;  4、共模电感  亦称共模扼流圈,常用于EMI滤波器中,对共模干扰起到抑制作用;  5、串模电感  亦称串模扼流圈,它采用单绕组结构,一般串联在开关电源的输入电路中;  6、频率补偿电感  构成LC型、LCR型频率补偿网络。  四变压器在开关电源中的名称及作用  1、工频变压器  对交流电源进行变压与隔离,再经过整流滤波后给DC/DC变换器(即开关稳压器)供电;  2、高频变压器  对高频电源进行储能、变压和隔离,适用于无工频变压器的开关电源中;  五二极管在开关电源中的名称及作用  1、整流二极管  低频整流、高频整流;  2、续流二极管  常用于降压式DC/DC变换器中;若在继电器、电机等的绕组两端并联续流二极管,即可为反电动势提供泄放回路,避免损坏驱动管;  3、钳位二极管  构成VD、R、C型钳位电路,吸收尖峰电压,对MOSFET功率场效应管起保护作用;  4、阻塞二极管  钳位保护电路中的二极管,亦称为阻尼二极管;  5、保护二极管  用于半波整流电路中,在负半周时给交流电提供回路;  6:隔离二极管  可实现信号隔离;  7、抗饱和二极管  将二极管串联在功率开关管的基极上,可降低功率开关管的饱和深度,提高关断速度。  8、快恢复二极管(FRD)  快恢复二极管的反向恢复时间trr一般为几百纳秒,正向压降为0.6-0.7V,正向电流为几安培至几千安培,反向峰值电压可达几百伏至几千伏,可用作开关电源中的输出整流管、一次钳位保护电路中的阻塞二极管。  9、超快恢复二极管(SRD)  超快恢复二极管则是在快速恢复二极管基础上发展而成的,其反向恢复电荷进一步减小,trr值可低至几十纳秒,可用作输出整流管、阻塞二极管,反馈电路中的整流管。  10、肖特基二极管(SBD)  全称为肖特基势垒二极管,它属于低压、低功耗、大电流、超高速半导体功率器件,其反向恢复时间可小到几纳秒,正向导通压降仅为0.4v左右,整流电流可达几十安培到几百安培。特别适合做低压输出电路中的整流管、续流二极管。  11、瞬变电压抑制(TVS)  亦称瞬态电压抑制器,其响应速度极快、钳位电压稳定,是一种新型过压保护器件,可用来保护开关电源集成电路、MOS功率器件以及其他对电压敏感的半导体器件。  12、双向触发二极管(DIAC)  亦称二端交流器件,常与晶闸管配套使用,构成过压保护电路。  六其他器件  1、整流桥(BR)  将交流电压变成脉动直流电压,送至滤波器。整流桥可由4只整流二极管构成,亦可采用成品镇流桥。  2、稳压管  构成简易稳压电路;接在开关电源的输出端,用来稳定空载时的输出电压;由稳压管、快恢复二极管和阻容元件构成一次侧钳位保护电路;构成过压保护电路。  3、晶体管  用作PWM调制器的功率开关管;构成恒压/恒流输出式开关电源的电压控制环和电流控制环;构成截流输出型开关电源的截流控制环;构成开关稳压器的通/断控制、欠电压保护、过电压保护、过电流保护等电路。  4、场效应晶体管(MOSFET)  用作PWM调制器或开关稳压控制器的功率开关管。  5、绝缘栅双极型晶体管(IGBT)  用作PWM调制器的功率开关管。  6、运算放大器  构成外部误差放大器、电压控制环和电流控制环。  7、晶闸管  单向晶闸管(SCR):与双向触发二极管配套使用,构成过压保护电路。  双向晶闸管(TRIAC):可构成交流侧的过压保护电路。  8、特种电阻  熔断电阻器(FR)  熔断电阻器亦称保险电阻或可熔断电阻器,它兼有熔断器和电阻器的功能,熔断电流从几十毫安到几安培,熔断时间为几秒到几十秒。  自恢复熔丝管(RF)  亦称自恢复保险丝,能自行恢复,反复使用,不需要维修。  软启动电阻  它属于负温度系数热敏电阻(NTCR),其特点是标称阻值极低(仅为1-47欧)、额定功率高(10-500w)、工作电流大(1-10A),适合做开关电源的启动保护器件。  压敏电阻器(VSR)  工作电压范围宽(6-3000v,分若干挡),对过电压脉冲响应速度快(几纳秒少至几十纳秒),耐冲击电流能力很强(可达100A-20KA),漏电流小(低于几微安至几十微安),电阻温度系数低(小于0.05%/C),价格低廉。可构成电压保护电路、防雷击保护电路、消除火花电路、浪涌电压吸收回路等。  数字电位器(DCP)  与可调式开关稳压器配套使用,构成可编程开关稳压器。  9、光电耦合器  线性光耦合器的电流传输比(CTR)与直流输入电流(IF)的特性曲线具有良好的线性度。在传输小信号时,能使输入输出呈线性关系,适合构成精密开关电源中的光耦反馈电路,并实现二次侧与一次侧的隔离。  10、滤波器  亦称EMI滤波器,它属于双向射频滤波器,一方面能滤除从交流电源线引入的外部电磁干扰,另一方面还可避免开关电源向外部发出噪声干扰,能显著提高开关电源的抗干扰能力,并使之符合电磁兼容(EMC)标准。  11、磁珠  管状、片状磁珠 以及磁珠阵列,能抑制开关噪声和尖峰干扰。
关键词:
发布时间:2025-10-15 14:34 阅读量:567 继续阅读>>
提高<span style='color:red'>开关电源</span>效率的五个方法
  开关电源的功耗包括由半导体开关、磁性元件和布线等的寄生电阻所产生的固定损耗以及进行开关操作时的开关损耗。对于固定损耗,由于它主要取决于元件自身的特性,因此需要通过元件技术的改进来予以抑制。在磁性元件方面,对于兼顾了集肤效应和邻近导线效应的低损耗绕线方法的研究由来已久。  为了降低源自变压器漏感的开关浪涌所引起的开关损耗,开发出了具有浪涌能量再生功能的缓冲电路等新型电路技术。以下是提高开关电源效率的电路和系统方法:  一、通过ZVS(零电压开关)、ZCS(零电流开关)等利用谐振开关来降低开关损耗  这种方法对于降低开关损耗极为有效,但问题是因峰值电流和峰值电压所导致的固定损耗将会增加。  二、运用以有源箝位电路为代表的边缘谐振来降低开关损耗  这种方法是为解决该问题而开发的有源缓冲器,是一种极为实用的ZVS方式。但是由轻负载条件下的无功电流所引发的效率下降问题却是其一大缺陷。  三、通过延展开关元件的导通时间以抑制峰值电流的方法来减少固定损耗  在这一种方法中,采用抽头电感器的方式是比较有效的,它能够应付由漏感所引起的浪涌现象。  四、在低电压大电流的场合通过改善同步整流电路的方法来减少固定损耗  两段式结构是实现同步整流电路高效工作的方法之一,它采用接近0.5的固定时间比率,并由前段的转换器来进行输出电压控制。它一反“两段式结构将导致效率下降”这一传统思维模式,在低电压大电流的场合非常有效。  五、利用转换器的并联结构来减少固定损耗  最后这种方法,既可将整个转换器电路进行并联,也可像电流倍增器那样部分采用并联结构。
关键词:
发布时间:2025-10-14 16:00 阅读量:499 继续阅读>>
回扫型TVS 是否适合用在<span style='color:red'>开关电源</span>端口
  在开关电源的过压保护设计中,瞬态电压抑制二极管(TVS)是常用的保护器件,其核心作用是在电路遭遇瞬态过压时快速导通,将电压钳位在安全范围,避免后级电路受损。然而,并非所有类型的 TVS 都能适配开关电源场景 ——回扫 TVS因其自身特性,在开关电源端口的应用中存在难以规避的风险,甚至可能反向破坏电路,成为“保护隐患”,但也并非说有的回扫型TVS 都不适合用在电源端口。  一、先理清概念:什么是 “回扫型 TVS”?  要理解回扫型 TVS 的应用局限,首先需要明确其核心特性与普通 TVS 的差异。  TVS二极管的核心参数是钳位电压(Vc)和击穿电压(Vbr)。  待机状态(高阻态):当两端电压低于击穿电压时,TVS处于关断状态,电阻极大,漏电流极小,对电路几乎没有影响。  击穿点:当瞬态电压超过击穿电压时,TVS被迅速击穿,进入钳位状态。  普通与回扫型TVS关键区别:  普通TVS:击穿后,电流增大,其两端电压会平稳地上升(钳位电压Vc)。  回扫型TVS:击穿后,随着电流增大,由于其内部的半导体物理效应,其两端电压会不升反降,形成一个电压下降的区域。这个电压下降到的谷值,就是回扫电压。  普通TVS的伏安特性曲线像一个对称的“Z”字,而回扫型TVS的曲线更像一个“S”形。关键区别在于负阻区。  二、问题的核心:开关瞬间与负阻特性的冲突  将回扫 TVS用于开关电源的输入口时,一个隐藏的风险在系统上电的瞬间被触发。  1、 开关电源的启动特性:开关电源在合闸上电的瞬间,其输入端的滤波电容(大容值电解电容)相当于短路状态,会产生一个巨大的浪涌充电电流。这个电流虽然持续时间极短,但峰值可能高达数十甚至上百安培。  2、 回扫TVS的负阻效应: 回扫特性本质上源于TVS芯片在巨大电流下的负温度系数(NTC)效应。在极高电流密度下,硅材料发热导致载流子浓度急剧增加,呈现出“负阻”特性:电流越大,其动态电阻反而减小,从而导致钳位电压(Vc)下降。  3、 危险的耦合:  在系统上电瞬间,巨大的电容充电电流浪涌可能意外触发回扫TVS的击穿。  一旦被触发,该电流浪涌会立即激发回扫 TVS的负阻特性,使其钳位电压Vc急剧下降。  关键点:这个瞬间下降的Vc值,完全可能低于开关电源内部功率器件的最高额定电压(如MOSFET的Vds),甚至低于电源的正常工作电压范围。  三、危险的“锁存”效应  现在,我们来看最危险的情况,钳位电压低于电源的正常工作电压。  假设一个回扫型TVS用于保护一个+5V的电源线。  正常情况:一个+10kV的静电脉冲(或浪涌脉冲)袭来,TVS被击穿,将电压钳位。脉冲能量泄放后,电压回落到5V,TVS应自动恢复到高阻态。  异常情况(相当于短路):如果这个TVS的回扫电压是 +3V,低于工作电压+5V  第一步:一个浪涌使TVS击穿。  第二步:TVS进入负阻区,其两端电压从击穿电压(如6V)下降并稳定在3V。  第三步:浪涌脉冲过去了,但电路的+5V电源还在持续供电。  第四步:此时,TVS两端的电压是3V,而电源要维持5V。这产生了一个电压差。为了维持这个电压差,电源会持续地向TVS注入电流。  第五步:由于TVS仍处于导通后的低阻态,这个电流会非常大,一直高于回扫的维持电流。  第六步:结果:TVS无法自行关断,它会像一根导线一样,持续地从5V电源吸取巨大的电流。这就是“锁存”效应。  可以把它想象成一个不能自动弹起的开关:浪涌把开关按了下去(击穿),但因为弹簧(回扫特性)太软,开关被卡在了“ON”的位置,无法弹回“OFF”位,导致电流持续流通。  四、为什么“相当于短路”?  在这种“锁存”状态下:  阻抗极低:TVS的动态电阻可能只有几欧姆甚至更低。  电流极大:根据欧姆定律 I = V/R,即使很小的电压差(如5V-3V=2V)除以很小的电阻,也会产生安培级的持续电流。这个电流大于锁存的维持电流,一直会让TVS 处于“锁存”状态,无法恢复,除非流入的电流低于维持电流。  后果严重:这个巨大的持续电流会产生大量热量,导致:  1、TVS自身因过热而烧毁(如果它的功率容量不够)。  2、更糟糕的是,如果TVS没立即烧毁,它会成为一个巨大的负载,拉垮整个电源系统,导致系统供电异常甚至重启。  3、起不到保护作用:当真正的过压再次来临时,这个已经处于导通状态的TVS可能无法有效响应。  五、深回扫和浅回扫TVS  根据回扫的大小(深浅),可以分为深回扫和浅回扫两种TVS。  深回扫TVS:  定义:深回扫负阻效应强,电压下降幅度大,回扫电压Vc低于工作电压Vrwm。只需要一个很小的电流就能维持导通状态。  优点:钳位电压极低,能为后级芯片提供最高级别的保护,特别适合保护那些耐压值非常低的先进工艺芯片。  缺点:锁存风险极高:由于回扫电压很低且维持电流小,一旦在电源线上误触发,电源电压很容易就能提供超过其维持电流的能量,导致TVS持续导通(短路),直至烧毁。  应用场景: 主要用于信号线路的保护,特别是那些驱动能力非常弱的线路(如高速数据线、射频天线)。绝对禁止用于能提供较大电流的电路,尤其是电源总线。  浅回扫 TVS  定义:负阻效应弱,电压下降幅度小,回扫电压相对较高:通常会高于或接近常见的工作电压。维持电流通常较高:需要一个相对大一些的电流才能维持导通状态。  优点:抗锁存能力强,安全性高:由于回扫电压较高且维持电流大,即使误触发,正常的电路电压也难以提供足够的电流来维持其导通状态,因此它能更容易地自动关断,系统稳定性更好。  缺点:钳位电压相对较高:保护性能不如深回扫TVS那么“强悍”。  应用场景:可以用于一些对锁存风险敏感但又需要一定浪涌防护的场合。例如:某些低压、有限流功能的电源路径,或者对保护等级要求不是极端苛刻的通用I/O口。  是深回扫和普通TVS之间一个很好的折中选择。  六、回扫型TVS 应用注意事项  工程选型建议:  1、首选问题:信号线还是电源线?  电源线/高驱动电路:优先考虑浅回扫或标准TVS。稳定性压倒一切,避免锁存风险。  高速信号线/弱驱动电路:可以优先考虑深回扫TVS。利用其极低的钳位电压为昂贵的主芯片提供顶级保护,同时由于信号线驱动电流小,锁存风险天然可控。  2、仔细阅读数据手册:  一定要查看 I-V曲线图。深回扫的曲线“回扫”沟壑非常深且陡峭;浅回扫则相对平缓。确认维持电流的大小,并评估你的电路在异常情况下能否提供超过这个值的电流。  (1)深回扫回扫型TVS 适合用于信号数据线(满足结电容条件)。  (2)浅灰色和普通TVS 适合用于电源端口。  (3)浅回扫型TVS 即使它的钳位电压Vc高于工作电压Vrwm,“锁存”效应不会发生,我们也一定要根据TVS电压型号放到电路里面考虑多种情况实际测试,因为电路应用不同,可能会发生巨大区别。并非“一颗打遍天下”。  总之,回扫型TVS应用 ,我们要根据电路实际情况选型。  Leiditech雷卯电子致力于成为电磁兼容解决方案和元器件供应领导品牌,供应ESD,TVS,TSS,GDT,MOV,MOSFET,Zener,电感等产品。雷卯拥有一支经验丰富的研发团队,能够根据客户需求提供个性化定制服务,为客户提供最优质的解决方案。
关键词:
发布时间:2025-10-10 15:39 阅读量:501 继续阅读>>

跳转至

/ 5

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
型号 品牌 抢购
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码