如何选择IGBT?

Release time:2024-06-25
author:AMEYA360
source:网络
reading:1141

  碳化硅 (SiC) 和氮化镓 (GaN) 等宽禁带半导体的应用日益增多,然而,在这些新技术出现之前,许多高功率应用都是使用高效、可靠的绝缘栅双极型晶体管 (IGBT),事实上,许多此类应用仍然适合继续使用 IGBT。在本文中,我们介绍 IGBT 器件的结构和运行,并列举多种不同 IGBT 应用的电路拓扑结构,然后探讨这种多用途可靠技术的新兴拓扑结构。

  IGBT 器件结构简而言之,IGBT 是由 4 个交替层 (P-N-P-N) 组成的功率半导体晶体管,通过施加于金属氧化物半导体 (MOS) 栅极的电压进行控制。这一基本结构经过逐渐调整和优化后,可降低开关损耗,且器件厚度更薄。近期推出的 IGBT 将沟槽栅与场截止结构相结合,旨在抑制固有的寄生 NPN 行为。该方法有助于降低器件的饱和电压和导通电阻,从而提升整体功率密度。

20240625112547_107.png

  应用与拓扑结构如今,IGBT 通常用于特定应用的拓扑结构,下面列举了其中的几种。

  焊接机如今许多焊接机使用逆变器,而非传统的焊接变压器,因为直流输出电流可以提高焊接过程的控制精度。使用逆变器还有其他优势,比如直流电流比交流电流安全,而且采用逆变器的焊接机具有更高的功率密度,因此重量更轻。功率级(单相或三相)将交流输入电压转换为逆变器的直流母线电压。输出电压通常为 30 V,但一旦启动焊弧,在开路负载操作几乎低至 0 V 的情况下(短路条件),输出电压可能高达 60 V DC。

 20240625112556_961.png

  焊接逆变器中常用的拓扑结构包括全桥、半桥和双管正激,而恒定电流是最常用的控制方案。占空比因负载电平和输出电压而异。全桥和半桥拓扑结构的 IGBT 开关频率通常在 20 至 50 kHz 之间。

20240625112609_327.png

  电磁炉电磁炉的原理是,当高磁导率材质的锅靠近线圈时,通过励磁线圈推动(或耦合)锅内的电流循环。其运行方式与变压器大致相同,其中线圈负责初级侧,电磁炉底部负责次级侧。产生的大部分热量来源于锅底层形成的涡电流循环。这些系统的能量传输效率约为 90%,而顶部光滑的无感电器装置的能效仅为 71%,相比之下,(对于同量热传递)前者可节省大约 20% 的能量。逆变器将电流导入铜线圈,从而产生电磁场,电磁场穿透锅底,形成电流。产生的热量遵循焦耳效应公式,即锅的电阻乘以感应电流的平方。

 20240625112631_890.png

  对于电磁炉,比较重要的要求包括:

  高频开关

  功率因数接近一

  宽负载范围

  感应加热应用的输出功率控制通常基于可变频率方案。这是一种根据负载或线路频率变化来应用的基本方法。然而,该方法存在一个主要缺点:若要在宽范围内控制输出功率,频率需要大幅变化。

  感应加热最常用的拓扑结构基于谐振回路。谐振转换器的主要优势是高开关频率范围,同时能效不会降低。谐振转换器采用零电流开关 (ZCS) 或零电压开关 (ZVS) 等控制技术来降低功率损耗。谐振半桥 (RHB) 转换器和准谐振 (QR) 逆变器是备受欢迎的拓扑结构。RHB 结构的优势包括负载工作范围大,并且能够提供超高功率。

  QR 转换器的主要优势是成本较低,因此非常适合低至中功率范围(峰值功率高达 2 kW)、工作频率介于 20 至 35 kHz 之间的应用。

  电机驱动半桥转换器 (HB) 是电机驱动应用中一种最常见的拓扑结构,频率介于 2kHz 至 15kHz 之间。HB 输出电压取决于开关状态和电流极性。

 20240625112653_808.png

  考虑到电感负载,电流随后会增加。如果负载汲取正电流 (Ig>0),它将流经 T1,为负载提供能量 (Vg)。相反,如果负载电流 Ig 为负,电流经由 D 流回,将能量返回至直流电源。同样,如果 T4 开通(且 T1 关闭),会有 −Vbus/2 的电压施加于负载,且电流会减小。如果 Ig 为正,电流流经 D4,将能量返回至母线电源。

  适合IGBT应用的多电压等级拓扑结构快速开关给 HB 拓扑结构带来的局限性包括:

  只有两个输出电压等级

  无源和有源元件受到应力

  高开关损耗

  栅极驱动难度加大

  纹波电流升高

  EMI变高

  电压处理(无法与高电压母线结合使用)

  器件串联增加了实施工作的复杂性

  难以达到热平衡

  高滤波要求

  为了摆脱这些局限性,在不间断电源 (UPS) 和太阳能逆变器等应用中,采用新的多电压等级拓扑结构。常见结构包括单极性开关 I 型和 T 型转换器,它们能够在较高的母线电压下工作。随着可用输出状态增多,滤波器元件之间的电压相应减小,因此滤波损耗也更低,元件更小。开关损耗有所降低,而导通损耗则小幅增加(适合 16kHz - 40kHz 的较高频率,可达到约 98% 的高能效)。

  IGBT 的未来尽管 IGBT 已经问世很多年,但该技术仍是许多高电压和电流应用的理想之选。IGBT 不仅越来越多地应用于传统设计,还应用于新设计,因为新推出的器件在不断地推动 Vcesat 降低至 1V,并通过新型结构来提高电流密度和开关损耗。若要在使用 IGBT 的过程中获得最大效益,一个关键因素是先了解应用要求,然后选择合适的电路拓扑结构加以实施。

("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
Popular categories
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
model brand To snap up
Hot labels
Original authorized brand
Information leaderboard
  • Week of ranking
  • Month ranking
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code